椭圆参数方程
椭圆的参数方程:x=acosθ,y=bsinθ。椭圆参数方程是以焦点(c,0)为圆心,R为变半径的曲线方程。定义设椭圆的两个焦点分别为F1,F2,它们之间的距离为2c,椭圆上任意一点到F1,F2的距离和为2a(2a>2c)。以F1,F2所在直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy,则F1,F2的坐标分别为(-c,0),(c,0)。椭圆的切线法线:定理1:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB切椭圆C于点P,且A和B在直线上位于P的两侧,则∠APF1=∠BPF2。(也就是说,椭圆在点P处的切线即为∠F1PF2的外角平分线所在的直线)。定理2:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB为C在P点的法线,则AB平分∠F1PF2。
椭圆的参数方程是什么?
参数方程:x = a*costy = b*sint注意,t 不是 αy/x = tg(α) = b/a * tg(t)所求为:r^2 = x^2 + y^2 = a^2 * (cost)^2 + b^2 * (sint)^2 =(cost)^2 * [a^2 + b^2 * (tgt)^2] =(cost)^2 * [a^2 + a^2 * tg(α)^2] =(cost)^2 / (cosα)^2 * a^2 =另一方面,a^2/b^2 * tg(α)^2 = tg(t)^2 ====>a^2/b^2 * tg(α)^2 + 1 = 1/(cost)^2 ====>[ a^2 * (sinα)^2 + b^2 * (cosα)^2 ] / b^2 = (cosα)^2 /(cost)^2 ====>r^2 = a^2 * b^2 / [ a^2 * (sinα)^2 + b^2 * (cosα)^2 ]再开方就得到距离。扩展资料:椭圆上任意一点到F1,F2距离的和为2a,F1,F2之间的距离为2c。而公式中的b²=a²-c²。b是为了书写方便设定的参数。又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx²+ny²=1(m>0,n>0,m≠n)。即标准方程的统一形式。椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ。标准形式的椭圆在(x0,y0)点的切线就是 :xx0/a²+yy0/b²=1。椭圆切线的斜率是:-b²x0/a²y0,这个可以通过复杂的代数计算得到。半径为r的圆柱上与一斜平面相交得到一椭圆,该斜平面与水平面的夹角为α,截取一个过椭圆短径的圆。以该圆和椭圆的某一交点为起始转过一个θ角。则椭圆上的点与圆上垂直对应的点的高度可以得到f(c)=r tanα sin(c/r)。参考资料来源:百度百科--椭圆参考资料来源:百度百科--椭圆的标准方程