二项分布计算公式是什么?
X~B(n,p)是二项分布,即事件发生的概率为p,重复n次。它的期望E=np,方差为np(1-p)。在概率论和统计学中,二项分布是n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n=1时,二项分布就是伯努利分布。扩展资料对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。可以证明,一般的二项分布也具有这一性质,且: 当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值; 当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。
二项分布公式
二项分布公式为:P(X=k)=C (n,k)(p^k)* (1-p)^ (n-k)。下面是关于二项分布公式的一些拓展1、二项分布是n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。是显著性差异的二项试验的基础,可以帮助我们了解和监控生产实践过程中由于某些因素而导致的波动。2、在概率论和统计学中,二项分布是n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n=1时,二项分布就是伯努利分布。3、二项分布和超几何分布的区别:超几何分布需要知道总体的容量,而二项分布不需要;二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布。他们的相同点是超几何分布和二项分布都是离散型分布。4.泊松近似:当试验的次数趋于无穷大,而乘积np固定时,二项分布收敛于泊松分布。因此参数为λ=np的泊松分布可以作为二项分布B(n,p)的近似,近似成立的前提要求n足够大,而p足够小,np不是很小。二项分布正态近似:如果n足够大,那么分布的偏度就比较小。在这种情况下,如果使用适当的连续性校正,那么B(n,p)的一个很好的近似是正态分布当n越大(至少20)且p不接近0或1时近似效果更好。不同的经验法则可以用来决定n是否足够大,以及p是否距离0或1足够远,其中一个常用的规则是np和n(1 −p)都必须大于 5。