什么是光的干涉,有什么特征?
波长越长干涉现象越明显。例如红光和紫光,红光波长比紫光长,因此干涉现象越容易发生。现代物理认为,首先提出波动说的是意大利波仑亚大学的数学教授格里马第,他在1655年观测放在光束中的小棍子的影子时,首先发现了光的衍射现象。光子说是爱因斯坦提出来的。麦克斯韦根据电磁波跟光波的这些相似性指出,光波是一种电磁波.这就是光的电磁说(电磁说是高中提法)。
牛顿的微粒说,把光看成是宏观意义上的微粒,他解释光直线传播,与宏观物体一样,受力为0,作匀速直线运动。解释反射,光微粒在碰撞到界面,获得冲量而改变运动方向。但他不能解释两列光相遇,光微粒相碰问题。
惠更斯的波动说,可解释光的衍射,干涉,叠加。可是光可在真空中传播,他却无法解释。
麦克斯韦,说光是一种电磁波,并预言光在真空中速度,被后来的科学证实。也回答了真空中传播问题。可是,对以后发现的光电效应却无能为力。
后来,发现光电效应,按传统的波动理论,波德能量由振幅决定,与频率无关,可是光电效应表明,光的能量与频率有关,与振幅无关。于是爱因斯坦提出光子说,其认为光子能量E=hv,其中的v是指光的频率,这就埋下波粒二象性的根源。后来发现氢原子特征光谱不连续,说明光的粒子性。显然它与牛顿的微粒说是有区别的。
物质波(德布罗意波),是概率波,指空间中某点某时刻可能出现的几率其中概率的大小受波动规律的支配。德布罗意关系说明波长和动量成反比例,频率和总能成正比例。这个理论是路易·德布罗意於1923年在他的博士论文提出的。
比如一个电子,如果是自由电子,那么它的波函数就是行波,就是说它有可能出现在空间中任何一点,每点几率相等。如果被束缚在氢原子里,并且处于基态,那么它出现在空间任何一点都有可能,但是在波尔半径处几率最大。对于你自己也一样,你也有可能出现在月球上,但是和你坐在电脑前的几率相比,是非常非常小的,以至于不可能看到这种情况。这些都是量子力学的基本概念,非常有趣。
也就是说,量子力学认为物质没有确定的位置,它表现出的宏观看起来的位置其实是对几率波函数的平均值,在不测量时,它出现在哪里都有可能,一旦测量,就得到它的平均值和确定的位置。
量子力学里,不对易的力学量,比如位置和动量,是不能同时测量的,因此不能得到一个物体准确的位置和动量 ,位置测量越准 ,动量越不准。这个叫不确定性原理,当然即使不测量,它也存在。
机械波是周期性的振动在媒质内的传播,电磁波是周期变化的电磁场的传播.物质波既不是机械波,也不是电磁波.在德布罗意提出物质波以后,人们曾经对它提出过各种各样的解释.到1926年,德国物理学家玻恩(1882~1970)提出了符合实验事实的后来为大家公认的统计解释:物质波在某一地方的强度跟在该处找到它所代表的粒子的几率成正比.按照玻恩的解释,物质波乃是一种几率波.德布罗意波的统计解释粒子在某处邻近出现的概率与该处波的强度成正比
粒子观点:电子密处,概率大。电子疏处,概率小。
波动观点:电子密处,波强大。电子疏处,波强小。
波强∝振幅平方A2∝粒子密度∝概率。
什么是光的干涉?产生光的干涉现象的条件是什么
光的干涉现象:它是指因两束光波相遇而引起光的强度重新分布的现象。条件:两束光波相遇产生干涉现象的必要条件是:①频率相同;②光矢量(即电场强度矢量E)的振动方向相同;③在相遇处两束光的相位差恒定。 为了实现相干光的干涉,还应注意:两相干光至相遇点的光程差不能太大,以不超过波列长度(即相干长度)为限;两相干光的振幅不能相差太大,以保证干涉条纹明显可辨。拓展资料一、产生相干光波1、分波阵面法分波阵面法。将点光源的波阵面分割为两部分,使之分别通过两个光具组,经反射、折射或衍射后交迭起来,在一定区域形成干涉。由于波阵面上任一部分都可看作新光源,而且同一波阵面的各个部分有相同的位相,所以这些被分离出来的部分波阵面可作为初相位相同的光源,不论点光源的位相改变得如何快,这些光源的初相位差却是恒定的。杨氏双缝、菲涅耳双面镜和洛埃镜等都是这类分波阵面干涉装置。2、分振幅法分振幅法。当一束光投射到两种透明媒质的分界面上,光能一部分反射,另一部分折射。这方法叫做分振幅法。最简单的分振幅干涉装置是薄膜,它是利用透明薄膜的上下表面对入射光的依次反射,由这些反射光波在空间相遇而形成的干涉现象。由于薄膜的上下表面的反射光来自同一入射光的两部分,只是经历不同的路径而有恒定的相位差,因此它们是相干光。另一种重要的分振幅干涉装置,是迈克耳孙干涉仪。3、干涉条纹在各种干涉条纹中,等倾干涉条纹和等厚干涉条纹是比较典型的两种。以上假定光源发出的是单色光(或者用滤光片从光源所发的许多波长的光中取出某一单色光)。当光源发出的许多波长的光皆发生干涉时,会形成彩色干涉条纹(见白光条纹)。二、干涉分类1、双光波干涉即两个成员波的干涉。杨氏双孔和双缝干涉、菲涅耳双镜干涉及牛顿环等属于此类。双光波干涉形成的明暗条纹都不是细锐的,而是光强分布作正弦式的变化,这就是双光波干涉的特征。多光波干涉则可形成细锐的条纹。2、多光波干涉即多于两个成员波的干涉。陆末-格尔克片干涉属于此类。图中A为平行平板玻璃,光的干涉一端开有倾斜的入射窗BC。从S发出的源波经BC进入玻璃片后在其上、下表面间多次反射。每次在上表面反射时,皆同时有一波折射入空气中。所有各次折射入空气中的波就是从同一源波按分振幅方式造成的一组成员波。在透镜L的焦平面Π上观测干涉条纹。相邻两波在P点的位相差为式中λ为光波在真空中的波长,n为玻璃的折射率,t为玻璃片厚度,β为玻璃片内的光程辅助线与表面法线的夹角。在接收面光强分布的条纹十分细锐,这是多光波干涉的特征。3、偏振光的干涉在以上所举的干涉中,各成员波在考察点处可认为偏振方向大体一致。当参与干涉的两个成员波的偏振面夹有一定角(例如90°)时,如何产生干涉见偏振光的干涉。