什么是快速成形技术?
快速成形技术(Rapid Prototyping;RP) 快速成形技术(Rapid Prototyping;RP)又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术, 诞生于20世纪80年代后期, 是基于材料堆积法的一种高新制造技术, 被认为是近20年来制造领域的一个重大成果。它集机械工程、 CA D、逆向工程技术、分层制造技术、数控技术、材料科学、 激光技术于一身,可以自动、直接、快速、 精确地将设计思想转变为具有一定功能的原型或直接制造零件, 从而为零件原型制作、 新设计思想的校验等方面提供了一种高效低成本的实现手段。即, 快速成形技术就是利用三维CAD的数据,通过快速成型机, 将一层层的材料堆积成实体原型。满意请采纳
快速成型技术有哪些?
一、SLA(激光快速成型),成型材料:光敏树脂;二、FDM(熔融堆积成型),成型材料:ABS,PC,PPSF等;三、OBJET(高精度快速成型),和SLA成型原理类似,材料:光敏树脂。四、真空复模,运用硅胶材料制作简易模具,进行小批量的浇注成型。五、低压灌注,适用于结构接单的大件制作。快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。快速成型技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加", 类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。快速成型可以在无需准备任何模具、刀具和工装卡具的情况下,直接接受产品设计(CAD)数据,快速制造出新产品的样件、模具或模型。因此,RP技术的推广应用可以大大缩短新产品开发周期、降低开发成本、提高开发质量。由传统的"去除法"到今天的"增长法",由有模制造到无模制造。
激光快速成型技术的特点是什么?
激光快速成型技术特点大概可分为一下集中:
1、制造速度快,成本低,节约了时间和成本。
2、采用非接触的加工模式,没有传统加工的残余力问题,工具的更新问题,无切割、噪声等,有利于保护环境。
3、可实现快速铸造,快速模具制造,特别适用于新品的开发和单件零件的生产。
激光快速成形却是采用一种全新的成形原理——分层加工、迭加成形。他是多种先进制造技术的集成。
目前,按照这种分层加工、迭加成形原理开发出的激光快速成形机有很多种,主要几种是:
1、液态光敏聚合物选择性固化
这种激光快速成形机所使用的构形材料是一种液态光敏聚合物,在紫外光的照射下会发生聚合固化反应,由液态变成固态,其优点是:能直接得到类似塑料的树脂件,且表面粗糙度较小。
其缺点是:
(1)成形过程中的化学和物理变化使得尺寸精度不易保证,且会发生蠕变;
(2)须对整个截面进行扫描固化,成形时间较长,成形后要进一步固化处理;
(3)由于未被激光束照射的部分仍为液态,因此对于悬伸部分要事先设计支撑,固化后再去除;
(4)光敏树脂固化后较脆,易断裂,可加工性不好,工作温度不能超过100℃,会吸湿膨胀, 抗腐蚀能力不强,且价格昂贵(140-2404 /kg);
(5)产生紫外激光的激光管寿命2000小时左右。
2、薄型材料选择性切割
这种激光快速成形所使用的构形材料是事先涂有热熔胶的纸,其成形过程与前面所述的制作地形模型的过程相似,
其优点是:
(1)尺寸精度较高;
(2)只须对轮廓线进行切割,制作效率高;
(3)无需设计支撑;
(4)制成的样件有类似木质制品的硬度,稍作处理后可在200℃以下环境中使用,可进行一定的切削加工;
(5)所用二氧化碳激光器寿命达20000小时;
(6)构形材料价格便宜(8/kg)。
其缺点是:
(1)不能直接制作塑料件;
(2)表面粗糙度较高,工件表面有明显的台阶纹,成型后要进行打磨;
(3)易吸湿膨胀,成形后要尽快表面防潮处理;
(4)工件缺少弹性。
3、丝状材料选择性熔复
这种快速成型机所使用的构形材料是丝状热塑性材料,其工作原理类似于标花蛋糕的制作, 丝状材料由供丝机构送进喷头,在喷头中加热到熔融态,按照截面形状涂覆在工作台上,并 快速冷却固化,一层完成后喷头上升一个层高,再进行下一层的涂覆,其优点是:
(1)能直接制作ABS塑料;
(2)尺寸精度较高;
(3)材料利用率高。
其缺点是:
(1)表面粗糙度较高,需后处理;
(2)成形时间较长;
(3)材料昂贵(250-458/kg);
(4)悬臂结构处要设置支撑,不过新型FDM快速成形机上设置了两个喷头,一个喷成形材料 ,另一个喷支撑材料,并且支撑材料可以进行水溶去除,减小了后处理时间。
4、粉末材料选择性烧结
这种快速成型机的工作原理与SLA相仿,不过所用成形材料不是液态的光敏树脂,而是粉末状的高分子材料、金属或陶瓷与粘结剂的混合物等,粉粒直径为50-125靘,成形时先在工作台上铺一层粉末材料,并加热至略低于熔化温度,然后激光束按照截面形状进行扫描,被扫描的部分材料熔化、粘接成形,不被扫描的粉未材料仍呈粉粒状作为工件的支撑,一层完成成形后,工作台下降一个层高,再进行下一层的铺料和烧结,其优点是:
(1)可直接得到塑料、陶瓷或金属件,可加工性好;
(2)无需设计支撑。
其缺点是:
(1)成形件结构疏松多孔,表面粗糙度较高;
(2)成形效率不高;
(3)得到的塑料、陶瓷或金属件远不如传统成形方法得到的同类材质工件, 需进行渗铜等后处理,但在后处理中难于保证制件尺寸精度。
快速成型技术与传统工艺相比有哪些特点
传统的产品加工工艺中需要切削、铸造、锻造以及进行相应的焊接相比,上海快速成型厂所使用的快速成型技术可以适应我们生活中各种材料的的制造与加工的困难程度,可以获得性能比较优异的材料和零件结构能力。
以上述所讲,材料的快速成型技术跟材料、成型的方法、零件的结构形式有关。快速成型的本质主要包括成型材料的化学成分、物理性质(熔点、热膨胀系数、热导率、粘度及流动性)成型材料的使用状态(如粉末、线材还是箔材)等有很大的关系,只有我们认清这些材料的特性以后就可以选着合适的材料的对所生产的产品进行快速成型技术,也可以保证所生产的产品与投入市场的产品没有很大的差距。
材料的快速成型技术主要包括成型材料的致密度和气孔率。生产的过程中成型材料的显微组织的性能是否可以满足,成型材料、零件的精度和表面的粗糙程度、成型材料的收缩性(内应力、变形及开裂)看看是否能够适应各种不同的快速成型的方法的特定要求。生产产品的精度会直接影响到产品的结构,产品表面的粗糙程度会影响到产品表面是否存在一定的瑕疵,材料的收缩性会影响到产品在生产的过程中所存在的精度要求。成型材料的结构在一定的程度上会影响到材料的成型性,如CAD切片的对称性、Z向的凸变性等。
*********************************************************************
很高兴为您解答,祝你学习进步!
【百度知道教育6】团队为您答题。有不明白的可以追问!
如果您认可我的回答。请点击右边的【选为满意回答】按钮,谢谢!
简述四种快速成行技术的原理及应用
四种快速成行技术主要工艺有四种基本类型:光固化成型法、分层实体制造法、选择性激光烧结法和熔融沉积制造法。
1、光固化成形
SLA(Stereo lithography Apparatus)工艺也称光造型、立体光刻及立体印刷,其工艺过程是以液态光敏树脂为材料充满液槽,由计算机控制激光束跟踪层状截面轨迹,并照射到液槽中的液体树脂,而使这一层树脂固化,之后升降台下降一层高度,已成型的层面上又布满一层树脂,然后再进行新一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕,得到1个三维实体模型。该工艺的特点是:原型件精度高,零件强度和硬度好,可制出形状特别复杂的空心零件,生产的模型柔性化好,可随意拆装,是间接制模的理想方法。缺点是需要支撑,树脂收缩会导致精度下降,另外光固化树脂有一定的毒性而不符合绿色制造发展趋势等。
2、分层实体制造
LOM(Laminated Object Manufacturing)工艺或称为叠层实体制造,其工艺原理是根据零件分层几何信息切割箔材和纸等,将所获得的层片粘接成三维实体。其工艺过程是:首先铺上一层箔材,然后用CO,激光在计算机控制下切出本层轮廓,非零件部分全部切碎以便于去除。当本层完成后,再铺上一层箔材,用滚子碾压并加热,以固化黏结剂,使新铺上的一层牢固地粘接在已成形体上,再切割该层的轮廓,如此反复直到加工完毕,最后去除切碎部分以得到完整的零件。该工艺的特点是工作可靠,模型支撑性好,成本低,效率高。缺点是前、后处理费时费力,且不能制造中空结构件。
3、选择性激光烧结
SLS(Selective Laser Sintering)工艺,常采用的材料有金属、陶瓷、ABS塑料等材料的粉末作为成形材料。其工艺过程是:先在工作台上铺上一层粉末,在计算机控制下用激光束有选择地进行烧结(零件的空心部分不烧结,仍为粉末材料),被烧结部分便固化在一起构成零件的实心部分。一层完成后再进行下一层,新一层与其上一层被牢牢地烧结在一起。全部烧结完成后,去除多余的粉末,便得到烧结成的零件。该工艺的特点是材料适应面广,不仅能制造塑料零件,还能制造陶瓷、金属、蜡等材料的零件。造型精度高,原型强度高,所以可用样件进行功能试验或装配模拟。
4、熔融沉积成形
FDM(Fused Deposition Manufacturing)工艺又称为熔丝沉积制造,其工艺过程是以热塑性成形材料丝为材料,材料丝通过加热器的挤压头熔化成液体,由计算机控制挤压头沿零件的每一截面的轮廓准确运动,使熔化的热塑材料丝通过喷嘴挤出,覆盖于已建造的零件之上,并在极短的时间内迅速凝固,形成一层材料。之后,挤压头沿轴向向上运动一微小距离进行下一层材料的建造。这样逐层由底到顶地堆积成一个实体模型或零件。该工艺的特点是使用、维护简单,成本较低,速度快,一般复杂程度原型仅需要几个小时即可成型,且无污染。
快速成型技术有哪些特点?
快速成型技术的特点:
1、制造原型所用的材料不限,各种金属和非金属材料均可使用;
2、原型的复制性、互换性高;
3、制造工艺与制造原型的几何形状无关,在加工复杂曲面时更显优越;
4、加工周期短,成本低,成本与产品复杂程度无关,一般制造费用降低50%,加工周期节约70%以上;
5、高度技术集成,可实现了设计制造一体化。
快速成型技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。
基本原理:
快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。
1、从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。
2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。
应用:
1、在新产品造型设计过程中的应用快速成形技术为工业产品的设计开发人员建立了一种崭新的产品开发模式。运用RPM技术能够快速、直接、精确地将设计思想转化为具有一定功能的实物模型(样件),这不仅缩短了开发周期,而且降低了开发费用,也使企业在激烈的市场竞争中占有先机。
2、在机械制造领域的应用由于RPM技术自身的特点,使得其在机械制造领域内,获得广泛的应用,多用于制造单件、小批量金属零件的制造。有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RPM技术直接进行成型,成本低,周期短。
3、快速模具制造传统的模具生产时间长,成本高。将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RPM技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具。
4、在医学领域的应用近几年来,人们对RPM技术在医学领域的应用研究较多。以医学影像数据为基础,利用RPM技术制作人体器官模型,对外科手术有极大的应用价值。
5、在文化艺术领域的应用在文化艺术领域,快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。
6、在航空航天技术领域的应用在航空航天领域中,空气动力学地面模拟实验(即风洞实验)是设计性能先进的天地往返系统(即航天飞机)所必不可少的重要环节。该实验中所用的模型形状复杂、精度要求高、又具有流线型特性,采用RPM技术,根据CAD模型,由RPM设备自动完成实体模型,能够很好的保证模型质量。
7、在家电行业的应用目前,快速成形系统在国内的家电行业上得到了很大程度的普及与应用,使许多家电企业走在了国内前列。快速成形技术的应用很广泛,可以相信,随着快速成形制造技术的不断成熟和完善,它将会在越来越多的领域得到推广和应用。
发展方向:
从目前RPM技术的研究和应用现状来看,快速成型技术的进一步研究和开发工作主要有以下几个方面:
1、开发性能好的快速成型材料,如成本低、易成形、变形小、强度高、耐久及无污染的成形材料。
2、提高RPM系统的加工速度和开拓并行制造的工艺方法。
3、改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,尤其是提高成形件的精度、表面质量、力学和物理性能,为进一步进行模具加工和功能实验提供基础。
4、开发快速成形的高性能RPM软件。提高数据处理速度和精度,研究开发利用CAD原始数据直接切片的方法,减少由STL格式转换和切片处理过程所产生精度损失。
5、开发新的成形能源。
6、快速成形方法和工艺的改进和创新。直接金属成形技术将会成为今后研究与应用的又—个热点。
7、进行快速成形技术与CAD、CAE、RT、CAPP、CAM以及高精度自动测量、逆向工程的集成研究。
8、提高网络化服务的研究力度,实现远程控制。
快速成型技术的原理、工艺过程?
l )产品三维模型的构建。由于 RP 系统是由三维 CAD 模型直接驱动,因此首先要构建所加工工件的三维CAD 模型。该三维CAD模型可以利用计算机辅助设计软件(如Pro/E , I-DEAS , Solid Works , UG 等)直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、 CT 断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。
2 )三维模型的近似处理。由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理,以方便后续的数据处理工作。由于STL格式文件格式简单、实用,目前已经成为快速成型领域的准标准接口文件。它是用一系列的小三角形平面来逼近原来的模型,每个小三角形用 3 个顶点坐标和一个法向量来描述,三角形的大小可以根据精度要求进行选择。
STL 文件有二进制码和 ASCll 码两种输出形式,二进制码输出形式所占的空间比 ASCII 码输出形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。很多CAD 软件都带有转换和输出 STL 格式文件的功能。
3 )三维模型的切片处理。根据被加工模型的特征选择合适的加工方向,在成型高度方向上用一系列一定间隔的平面切割近似后的模型,以便提取截面的轮廓信息。间隔一般取0.05mm~0.5mm, 常用 0.1mm 。间隔越小,成型精度越高(PolyJet技术分层厚度可以做到0.0016mm,所以出的模型精度很高),但成型时间也越长,效率就越低,反之则精度低,但效率高。
4 )成型加工和模型精度。根据模型文件切片处理的截面轮廓,在计算机控制下,相应的成型头(激光头或喷头)按各截面轮廓信息做扫描运动,在工作台上一层一层地堆积材料,然后将各层相粘结(有的技术是层堆积和固化,同步完成,如Objet的Polyjet技术),最终得到原型产品。
5 )成型零件的后处理。不同的成型工艺,其后处理复杂与简单程度不同。有的成型工艺需要从成型系统里取出成型件后,再次进行打磨、抛光和繁杂的二次固化以及去处支撑材料等,或放在高温炉中进行后烧结,进一步提高其强度,如SLA。有的成型工艺则只需要很简单的后处理,无需打磨和二次固化等。
http://zhishi.dkmall.com/cate80-82.html 这里有关于三维打印的更多资料
激光快速成型的基本原理是什么?
湖南华曙高科提醒您:激光快速成型技术的原理是用CAD生成的三维实体模型,通过分层软件分层、每个薄层断面的二维数据用于驱动控制激光光束,扫射液体、粉末或薄片材料,加工出要求形状的薄层,逐层积累形成实体模型。传统的工业成形技术中大部分遵循材料去除法这一方法的,如车削、铣削、钻削、磨削、 刨削;另外一些是采用模具进行成形,如铸造、冲压。而激光快速成形却是采用一种全新的 成形原理——分层加工、迭加成形。而激光快速成型技术快速制造出的模型或样件可以直接用于新产品设计验证、功能验证、工程分析、市场订货一级企业的决策等,缩短新产品开发周期,降低研发成本,提高企业竞争力。
快速成型技术与传统的注塑、铸造工艺相比有何特点
你说的是指塑料件和铸件吧? 快速成型有它的特点:成本低,效率高,可调性高。缺点:不可批量生产。快速成型技术 一般不会在生产厂家里面运用 大多是在有研发性质的公司或者研究所,用来开发新的产品。还有,快速成型还在逆向成型技术中得到运用。比如逆向扫描样品,经过3D软件处理成数模,再利用快速成型技术成型出来,把成型出来的东西作为模具的产品逆向开模