尊旭网
当前位置: 尊旭网 > 知识 >

整数规划

时间:2024-03-10 16:25:32 编辑:阿旭

什么是整数规划?并写出其数学模型

 整数规划是指一类要求问题中的全部或一部分变量为整数的数学规划。是近三十年来发展起来的、规划论的一个分支. 整数规划问题是要求决策变量取整数值的线性规划或非线性规划问题。  一般认为非线性的整数规划可分成线性部分和整数部分,因此常常把整数规划作为线性规划的特殊部分。在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求解答必须是整数。例如,所求解是机器的台数,工作的人数或装货的车数等。为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。整数规划的一种特殊情形是01规划,它的变数仅限于0或1。  整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的 ,30多年来发展出很多方法解决各种问题。解整数规划最典型的做法是逐步生成一个相关的问题,称它是原问题的衍生问题。对每个衍生问题又伴随一个比它更易于求解的松弛问题(衍生问题称为松弛问题的源问题)。通过松弛问题的解来确定它的源问题的归宿,即源问题应被舍弃,还是再生成一个或多个它本身的衍生问题来替代它。随即 ,再选择一个尚未被舍弃的或替代的原问题的衍生问题,重复以上步骤直至不再剩有未解决的衍生问题为止。目前比较成功又流行的方法是分枝定界法和割平面法,它们都是在上述框架下形成的。  0—1规划在整数规划中占有重要地位,一方面因为许多实际问题,例如指派问题、选地问题、送货问题都可归结为此类规划,另一方面任何有界变量的整数规划都与0—1规划等价,用0—1规划方法还可以把多种非线性规划问题表示成整数规划问题,所以不少人致力于这个方向的研究。求解0—1规划的常用方法是分枝定界法,对各种特殊问题还有一些特殊方法,例如求解指派问题用匈牙利方法就比较方便。[编辑]整数规划与组合最优化的关系  整数规划与组合最优化从广泛的意义上说,两者的领域是一致的,都是在有限个可供选择的方案中,寻找满足一定标准的最好方案。有许多典型的问题反映整数规划的广泛背景。例如,背袋(或装载)问题、固定费用问题、和睦探险队问题(组合学的对集问题)、有效探险队问题(组合学的覆盖问题)、送货问题等。因此整数规划的应用范围也是极其广泛的。它不仅在工业和工程设计和科学研究方面有许多应用,而且在计算机设计、系统可靠性、编码和经济分析等方面也有新的应用。[编辑]整数规划的种类  整数规划又分为:  1、纯整数规划:所有决策变量均要求为整数的整数规划  2、混合整数规划:部分决策变量均要求为整数的整数规划  3、纯0-1整数规划:所有决策变量均要求为0-1的整数规划  4、混合0-1规划:部分决策变量均要求为0-1的整数规划  整数规划与线性规划不同这处只在于增加了整数约束。不考虑整数约束所得到的线性规划称为整数规划的线性松弛模型。[编辑]整数规划模型  在现实生活中,决策变量代表产品的件数、个数、台数、箱数、艘数、辆数等等,则变量就只能取整数值. 如截料模型实际上就是一个整数规划模型,该例的决策变量代表所截钢管的根数,显然只能取整数值。因而整数规划模型也有着广泛的应用领域,从 以下的几个例子中更可以窥其一斑。  求解整数规划的一种自然的想法是,能否用整数规划的线性松弛模型的最优解经过四舍五入得到整数规划的最优解呢?回答是否定的,因为这样四舍五入的结果甚至不是可行解。  整数规划比通常的线性规划更加难以求解,迄今求解整数规划其基本求解思路都是按一定的搜索规则,在整数规划的线性松弛模型的可行域内寻找出整数最优解(或确认无整数最优解),因此求整数规划的解需要更多的时间,现通用的解法,主要有分支定界法、割平面法和穷举法等。

"整数规划"是什么意思?

整数规划
整数规划

integer programming

一类要求问题中的全部或一部分变量为整数的数学规划。

一般认为非线性的整数规划可分成线性部分和整数部分,因此常常把整数规划作为线性规划的特殊部分。在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求解答必须是整数。例如,所求解是机器的台数,工作的人数或装货的车数等。为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。整数规划的一种特殊情形是01规划,它的变数仅限于0或1。

整数规划与组合最优化从广泛的意义上说,两者的领域是一致的,都是在有限个可供选择的方案中,寻找满足一定标准的最好方案。有许多典型的问题反映整数规划的广泛背景。例如,背袋(或装载)问题、固定费用问题、和睦探险队问题(组合学的对集问题)、有效探险队问题(组合学的覆盖问题)、送货问题等。因此整数规划的应用范围也是极其广泛的。它不仅在工业和工程设计和科学研究方面有许多应用,而且在计算机设计、系统可靠性、编码和经济分析等方面也有新的应用。

整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的 ,30多年来发展出很多方法解决各种问题。解整数规划最典型的做法是逐步生成一个相关的问题,称它是原问题的衍生问题。对每个衍生问题又伴随一个比它更易于求解的松弛问题(衍生问题称为松弛问题的源问题)。通过松弛问题的解来确定它的源问题的归宿,即源问题应被舍弃,还是再生成一个或多个它本身的衍生问题来替代它。随即 ,再选择一个尚未被舍弃的或替代的原问题的衍生问题,重复以上步骤直至不再剩有未解决的衍生问题为止。目前比较成功又流行的方法是分枝定界法和割平面法,它们都是在上述框架下形成的。

0—1规划在整数规划中占有重要地位,一方面因为许多实际问题,例如指派问题、选地问题、送货问题都可归结为此类规划,另一方面任何有界变量的整数规划都与0—1规划等价,用0—1规划方法还可以把多种非线性规划问题表示成整数规划问题,所以不少人致力于这个方向的研究。求解0—1规划的常用方法是分枝定界法,对各种特殊问题还有一些特殊方法,例如求解指派问题用匈牙利方法就比较方便。


什么是混合整数非线性规划问题

整数规划

integer programming

一类要求问题中的全部或一部分变量为整数的数学规划。

一般认为非线性的整数规划可分成线性部分和整数部分,因此常常把整数规划作为线性规划的特殊部分。在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求解答必须是整数。例如,所求解是机器的台数,工作的人数或装货的车数等。为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。整数规划的一种特殊情形是01规划,它的变数仅限于0或1。

整数规划与组合最优化从广泛的意义上说,两者的领域是一致的,都是在有限个可供选择的方案中,寻找满足一定标准的最好方案。有许多典型的问题反映整数规划的广泛背景。例如,背袋(或装载)问题、固定费用问题、和睦探险队问题(组合学的对集问题)、有效探险队问题(组合学的覆盖问题)、送货问题等。因此整数规划的应用范围也是极其广泛的。它不仅在工业和工程设计和科学研究方面有许多应用,而且在计算机设计、系统可靠性、编码和经济分析等方面也有新的应用。

整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的 ,30多年来发展出很多方法解决各种问题。解整数规划最典型的做法是逐步生成一个相关的问题,称它是原问题的衍生问题。对每个衍生问题又伴随一个比它更易于求解的松弛问题(衍生问题称为松弛问题的源问题)。通过松弛问题的解来确定它的源问题的归宿,即源问题应被舍弃,还是再生成一个或多个它本身的衍生问题来替代它。随即 ,再选择一个尚未被舍弃的或替代的原问题的衍生问题,重复以上步骤直至不再剩有未解决的衍生问题为止。目前比较成功又流行的方法是分枝定界法和割平面法,它们都是在上述框架下形成的。

0—1规划在整数规划中占有重要地位,一方面因为许多实际问题,例如指派问题、选地问题、送货问题都可归结为此类规划,另一方面任何有界变量的整数规划都与0—1规划等价,用0—1规划方法还可以把多种非线性规划问题表示成整数规划问题,所以不少人致力于这个方向的研究。求解0—1规划的常用方法是分枝定界法,对各种特殊问题还有一些特殊方法,例如求解指派问题用匈牙利方法就比较方便。


什么是整数规划

整数规划是指规划中的变量(全部或部分)限制为整数,若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求某些变量的解必须是整数。例如,当变量代表的是机器的台数,工作的人数或装货的车数等。为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。整数规划的一种特殊情形是01规划,它的变数仅限于0或1。不同于线性规划问题,整数和01规划问题至今尚未找到一般的多项式解法。


对偶理论在整数规划中有哪些具体的应用?可以解决哪类典型整数规划问题?

首先,对偶理论和方法是最优化的基本工具,也是整数规划中内容最丰富、应用最广泛的松弛方法之一。在简单的实际问题中,可以利用拉格朗日松弛和对偶产生线性整数规划的界,从而用分支定界法求解规划问题的最优解。

其次,对偶理论中应用最为广泛的就是拉格朗日对偶,它的基本思想就是把难处理的约束通过乘子移到目标函数上去,只在优化问题中保留容易处理的约束,从而得到原问题的一个松弛问题,而最优的松弛问题可通过以乘子为变量的对偶问题来求得。只要熟悉基本的对偶思想应该能够明白这段话的含义。

最后,举几个常见的例子。
1.选址问题UFL
n个可选地址建立服务站,以服务m个客户。每个位置建站的成本不同,对不同客户的利润也不同。问题就是如何选择建站位置,使得总收入最大。
2.广义指派问题GAP
m台机器,n个工作,成本和效率各不相同,如何安排生产计划,使得总费用最小。
这两个问题的模型都可以用拉格朗日对偶,得到一个容易求解的松弛问题,比原问题的规模和复杂程度都小很多。


整数规划的简介

整数规划英文(integer programming)定义:在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求某些变量的解必须是整数。例如,当变量代表的是机器的台数,工作的人数或装货的车数等。为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。整数规划的一种特殊情形是01规划,它的变数仅限于0或1。不同于线性规划问题,整数和01规划问题至今尚未找到一般的多项式解法。

整数规划的分类

整数规划英文(integer programming)
定义:
在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求某些变量的解必须是整数。例如,当变量代表的是机器的台数,工作的人数或装货的车数等。为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。整数规划的一种特殊情形是01规划,它的变数仅限于0或1。不同于线性规划问题,整数和01规划问题至今尚未找到一般的多项式解法。

组合最优化
组合最优化通常都可表述为整数规划问题。两者都是在有限个可供选择的方案中,寻找满足一定约束的最好方案。有许多典型的问题反映整数规划的广泛背景。例如,背袋(或装载)问题、固定费用问题、和睦探险队问题(组合学的对集问题)、有效探险队问题(组合学的覆盖问题)、旅行推销员问题, 车辆路径问题等。因此整数规划的应用范围也是极其广泛的。它不仅在工业和工程设计和科学研究方面有许多应用,而且在计算机设计、系统可靠性、编码和经济分析等方面也有新的应用。

整数规划
整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的 ,30多年来发展出很多方法解决各种问题。解整数规划最典型的做法是逐步生成一个相关的问题,称它是原问题的衍生问题。对每个衍生问题又伴随一个比它更易于求解的松弛问题(衍生问题称为松弛问题的源问题)。通过松弛问题的解来确定它的源问题的归宿,即源问题应被舍弃,还是再生成一个或多个它本身的衍生问题来替代它。随即 ,再选择一个尚未被舍弃的或替代的原问题的衍生问题,重复以上步骤直至不再剩有未解决的衍生问题为止。现今比较成功又流行的方法是分支定界法和割平面法,它们都是在上述框架下形成的。

0—1规划
0—1规划在整数规划中占有重要地位,一方面因为许多实际问题,例如指派问题、选地问题、送货问题都可归结为此类规划,另一方面任何有界变量的整数规划都与0—1规划等价,用0—1规划方法还可以把多种非线性规划问题表示成整数规划问题,所以不少人致力于这个方向的研究。求解0—1规划的常用方法是分枝定界法,对各种特殊问题还有一些特殊方法,例如求解指派问题用匈牙利方法就比较方便。


  • 上一篇:整车
  • 下一篇:没有了