1,上海cosplay店
上海的COS团很多啊,但是大多是团内自带裁缝的
挠头,你在淘宝搜索魅惑猫猫,他家上海的能接受COS定做,服装也不错,但是需要你杀价,你也可以找找表面咒语家,一定要买衣服的实体店只能去动漫店了,但是那里的成品质量一般不太好的
我建议你淘宝定做去熟悉的商家这样会比较保险点
品种多价格好的江苏的ASATO和野猪家都不错,这两家我都买过很多东西,淘宝搜索,搜不到的HI我吧~!!
实体店COS服装还是不很推荐的,因为每月都有新角色,多大的店能接受得了啊。。。
2,cos的正片是怎么拍的啊?需要一些什么东西呢
正片的意思是最后出来的成片,就是你所有的东西都准备齐全,比如假发,头饰,妆面,COS的衣服,配饰,如果有武器那么武器也需要,然后找到适合你的COS角色的场景,找到摄影师为你拍摄,拍完出片后你后期再做好,这样就是正片了!每个人对正片的理解都不一样,对所有东西齐全的概念也不一样,其实只要尽量做到你能做到的就可以了,COS只是一个兴趣~自己玩的开心最重要啦~
3,关于cos的几个新人问题~
个人意见,假毛刚开始不要买很好的,等到学会护理了再调好的买,毕竟我过去弄坏过好几顶假毛,肉疼。。。orz
刘海可以在戴假毛前拿夹子夹起来,长发盘起来,再拿发网一套,就完美了,不会有多大影响的哟,表示我也是长发来着,虽然无刘海。
妆面会比普通的要夸张一点,打阴影,高光,眼线,假睫毛都有一定技术要求,楼主不会弄的话,可以找妆娘,付钱的那种,基本上五元解决吧,网上应该征集的到
还有不懂的可以再问我哟
4,猪脚万能的完结同人小说(火影 死神 综漫 黑执事 圣斗士 猎人 HP)
综漫之禁猎区
养着一群BOSS
综漫之冰月霜华
这些是我看了的,都还蛮长的....
我还是发合集给你你自己选好了...
http://wenku.baidu.com/album/view/18f6bb1aa8114431b90dd8ff
http://wenku.baidu.com/album/view/9f3caa00b52acfc789ebc9fe
http://wenku.baidu.com/album/view/808f9989680203d8ce2f246d
http://wenku.baidu.com/album/view/60fd05a1b0717fd5360cdc06
5,数学题,求高人赐教!拜谢了
1。求导 y=xln(1+x²)+(x²-1)/(1+x)
解:dy/dx=ln(1+x²)+2x²/(1+x²)+[2x(1+x)-(x²-1)]/(1+x)²=ln(1+x²)+2x²/(1+x²)+(x²+2x+1)/(1+x)²
=ln(1+x²)+2x²/(1+x²)+1
dy=[ln(1+x²)+2x²/(1+x²)+1]dx
2。求函数f(x)=xe^(-2x)的幂级数展开式。
解:在x=0处展成麦克劳林极数。
f(0)=0;f '(x)=e^(-2x)-2xe^(-2x);f ''(x)=-2e^(-2x)-2e^(-2x)+4xe^(-2x)=-4(1-x)e^(-2x);
f '''(x)=-4[-e^(-2x)-2(1-x)e^(-2x)]=-4(-3+2x)e^(-2x);
f '(0)=1;f ''(0)=-4;f '''(0)=12;。。。。。。
故xe^(-2x)=x+(-4/2!)x²+(12/3!)x³+.......=x-2x²+2x³-.......
3。设g(x)=x²-【0,x】∫te^tdt得即值
解:令g'(x)=2x-xe^x=x(2-e^x)=0,得驻点x₁=0,x₂=ln2;x₁是极大点,x₂是极小点。
故g(x)max=g(0)=0;
g(x)min=ln²2-【0,2】∫te^tdt=ln²2-【0,2】∫td(e^t)=ln²2-(te^t-e^t)【0,2】=ln²2-(e²+1)
4。函数z=z(x,y)由方程x+yz=cos(z+1)确定,求∂z/∂x
解:F(x,y)=x+yz-cos(z+1)=0
∂z/∂x=-(∂F/∂x)/(∂F/∂z)=-1/[y+sin(z+1)]
6,求高人指点,高一各科第一本书知识点总结
质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as
3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t
7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0
8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差
9.主要物理量及单位:初速(Vo):m/s
加速度(a):m/s^2 末速度(Vt):m/s
时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/
2) 自由落体
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛
1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )
3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动 万有引力
1)平抛运动
1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt
3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2
5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2
合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo
7.合位移S=(Sx^2+ Sy^2)1/2 ,
位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R
5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s
角速度(ω):rad/s 向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm1m2/r^2 G=6.67×10^-11N·m^2/kg^2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2
5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s
6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
机械能
1.功
(1)做功的两个条件: 作用在物体上的力.
物体在里的方向上通过的距离.
(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J)
1J=1N*m
当 00 F做正功 F是动力
当 a=派/2 w=0 (cos派/2=0) F不作功
当 派/2<= a <派 W<0 F做负功 F是阻力
(3)总功的求法:
W总=W1+W2+W3……Wn
W总=F合Scosa
2.功率
(1) 定义:功跟完成这些功所用时间的比值.
P=W/t 功率是标量 功率单位:瓦特(w)
此公式求的是平均功率
1w=1J/s 1000w=1kw
(2) 功率的另一个表达式: P=Fvcosa
当F与v方向相同时, P=Fv. (此时cos0度=1)
此公式即可求平均功率,也可求瞬时功率
1)平均功率: 当v为平均速度时
2)瞬时功率: 当v为t时刻的瞬时速度
(3) 额定功率: 指机器正常工作时最大输出功率
实际功率: 指机器在实际工作中的输出功率
正常工作时: 实际功率≤额定功率
(4) 机车运动问题(前提:阻力f恒定)
P=Fv F=ma+f (由牛顿第二定律得)
汽车启动有两种模式
1) 汽车以恒定功率启动 (a在减小,一直到0)
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值
2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)
a恒定 F不变(F=ma+f) V在增加 P实逐渐增加最大
此时的P为额定功率 即P一定
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值
3.功和能
(1) 功和能的关系: 做功的过程就是能量转化的过程
功是能量转化的量度
(2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量
功是物体状态变化过程有关的物理量,即状态量
这是功和能的根本区别.
4.动能.动能定理
(1) 动能定义:物体由于运动而具有的能量. 用Ek表示
表达式 Ek=1/2mv^2 能是标量 也是过程量
单位:焦耳(J) 1kg*m^2/s^2 = 1J
(2) 动能定理内容:合外力做的功等于物体动能的变化
表达式 W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功
5.重力势能
(1) 定义:物体由于被举高而具有的能量. 用Ep表示
表达式 Ep=mgh 是标量 单位:焦耳(J)
(2) 重力做功和重力势能的关系
W重=-ΔEp
重力势能的变化由重力做功来量度
(3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关
重力势能是相对性的,和参考平面有关,一般以地面为参考平面
重力势能的变化是绝对的,和参考平面无关
(4) 弹性势能:物体由于形变而具有的能量
弹性势能存在于发生弹性形变的物体中,跟形变的大小有关
弹性势能的变化由弹力做功来量度
6.机械能守恒定律
(1) 机械能:动能,重力势能,弹性势能的总称
总机械能:E=Ek+Ep 是标量 也具有相对性
机械能的变化,等于非重力做功 (比如阻力做的功)
ΔE=W非重
机械能之间可以相互转化
(2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能
发生相互转化,但机械能保持不变
表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功
高中数学必修4复习资料
2、角 的顶点与原点重合,角的始边与 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.
第一象限角的集合为 二象限
第三象限 第四象限
终边在 轴上的角的集合为 终边在 轴上的角的集合为
终边在坐标轴上的角的集合为
3、与角 终边相同的角的集合为
4、已知 是第几象限角,确定 所在象限的方法:先把各象限均分 等份,再从 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则 原来是第几象限对应的标号即为 终边所落在的区域.
5、长度等于半径长的弧所对的圆心角叫做 弧度.
6、半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是 .
7、弧度制与角度制的换算公式: , , .
8、若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则 , , .
9、设 是一个任意大小的角, 的终边上任意一点 的坐标是 ,它与原点的距离是 ,则 , , .
10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.
11、三角函数线: , , .
12、同角三角函数的基本关系:
;
.
13、三角函数的诱导公式:(口诀:奇变偶不变,符号看象限.)
, , .
, , .
, , .
, , .
, .
, .
14、函数 的图象上所有点向左(右)平移 个单位长度,得到函数 的图象;再将函数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数 的图象;再将函数 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 的图象.
函数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数 的图象;再将函数 的图象上所有点向左(右)平移 个单位长度,得到函数 的图象;再将函数 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 的图象.
函数 的性质:
①振幅: ;②周期: ;③频率: ;④相位: ;⑤初相: .
函数 ,当 时,取得最小值为 ;当 时,取得最大值为 ,则 , , .
15、正弦函数、余弦函数和正切函数的图象与性质:
16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.
有向线段的三要素:起点、方向、长度.零向量:长度为 的向量. 单位向量:长度等于 个单位的向量.
平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.
相等向量:长度相等且方向相同的向量.
17、向量加法运算:
⑴三角形法则的特点:首尾相连.
⑵平行四边形法则的特点:共起点.
⑶三角形不等式: .
⑷运算性质:①交换律: ;②结合律: ;③ .
⑸坐标运算:设 , ,则 .
18、向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量.
⑵坐标运算:设 , ,则 .
设 、 两点的坐标分别为 , ,则 .
19、向量数乘运算:
⑴实数 与向量 的积是一个向量的运算叫做向量的数乘,记作 .
① ;
②当 时, 的方向与 的方向相同;当 时, 的方向与 的方向相反;当 时, .
⑵运算律:① ;② ;③ .
⑶坐标运算:设 ,则 .
20、向量共线定理:向量 与 共线,当且仅当有唯一一个实数 ,使 .
设 , ,其中 ,则当且仅当 时,向量 、 共线.
21、平面向量基本定理:如果 、 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 ,有且只有一对实数 、 ,使 .(不共线的向量 、 作为这一平面内所有向量的一组基底)
22、分点坐标公式:设点 是线段 上的一点, 、 的坐标分别是 , ,当 时,点 的坐标是 .
23、平面向量的数量积:
⑴ .零向量与任一向量的数量积为 .
⑵性质:设 和 都是非零向量,则① .②当 与 同向时, ;当 与 反向时, ; 或 .③ .
⑶运算律:① ;② ;③ .
⑷坐标运算:设两个非零向量 , ,则 .
若 ,则 ,或 .
设 , ,则 .
设 、 都是非零向量, , , 是 与 的夹角,则 .
24、两角和与差的正弦、余弦和正切公式: