1,何为正相色谱和液相色谱,在应用上有何特点
液相色谱有正相和反相之分。如果采用极性固定相和相对非极性流动相,就称为正相;如果采用相对非极性固定相和极性流动相,则称为反相。由于极性化合物更容易被极性固定相所保留,所以正相液-液色谱系统一般可用于分离极性化合物。相反,反相色谱系统一般可用于分离非极性或弱极性化合物。正相色谱的流出顺序是极性小的先流出,极性大的后流出;反相色谱的流出顺序正好相反。
高效液相色谱特点:①高压:流动相为液体,流经色谱柱时,受到的阻力较大,为了能迅速通过色谱柱,必须对载液加高压。
②高效:分离效能高。可选择固定相和流动相以达到最佳分离效果,比工业精馏塔和气相色谱的分离效能高出许多倍。
③高灵敏度:紫外检测器可达0.01ng,进样量在μL数量级。
④应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势。
⑤分析速度快、载液流速快:较经典液体色谱法速度快得多,通常分析一个样品在15~30分钟,有些样品甚至在5分钟内即可完成,一般小于1小时。
2,反相色谱的概念
反相液相色谱柱效高、分离能力强、保留机理清楚,是液相色谱分离模式中使用最为广泛的一种,对于生物大分子、蛋白质及酶的分离分析,反相液相色谱正受到越来越多的关.反相色语法是以表面非极性载体为固定相,面以比固定相极性强的溶剂为流动相的—种液相色谱分离模式.反相色谱固定相大多是硅胶表面键合疏水基团,基于样品中的不同组分和疏水基团之间疏水作用的不同而分离.在生物大分子分离中,多采用离子强度较低的酸件水溶液,添加一定量乙腈、异内醇或甲醇等与水互溶的有机溶剂作流动相.普通的反相色谱固定相和孔径大于300Å的硅胶键合烷基固定相应用较为普遍,聚合物基质的反相色谱固定相也有较多应用.
反相色谱中样品的保留值主要由固定相比表面积、键合相种类和浓度决定,保留值通常随链长增长或键合相的疏水性增强而增大,对于非极性化合物通常遵循以下规则:(弱)非键合硅胶 << 氰基 < C1(TMS) < C3 < C4 < 苯基 < C8 ≈ C18(强).溶质保留值与固定相表面积成正比,普通载体(80Å)的表面积约为250m2/g,而300Å孔径载体的比表面积约为60m2/g。当其他条件相同时,溶质在300Å孔径(低表面积)色谱柱上的保留值大约为80Å孔径色谱柱上保留值的1/4(60:250),小孔隙柱如高保留的C18柱或石墨碳柱有利于强亲水性样品洗脱.样品的保留值也可以通过改变流动相组成或溶剂强度来调整,溶剂强度取决于有机溶剂的性质和其在流动相中的浓度.在反相色谱中,采用高溶剂强度、低极性的流动相时可获得较低保留值.固定相的不同也可以导致选择性发生变化,氰基、苯基、C8、C18等柱的选择性有很大差异,一般应优先考虑C8、C18柱,然后是氰基柱,再次是苯基柱.
反相条件下,大多数蛋白质由于低PH、有机溶剂存在、温度高于室温和疏水键合相等综合原因发生变性,这些化合物可能以两种或两种以上独立或动态平衡的形式存在,它们通过色谱柱的保留速度不同,导致谱峰展宽、变形、甚至出现单一蛋白有多个峰的现象,部分变性也易使蛋白在柱上聚集,造成被洗脱蛋白的回收率低和鬼峰.反相色谱固定相表面烷基链长度对蛋白质的反相保留和蛋白质的活性回收有很大差异,烷基链越长(C8、C22、C30),固定相疏水性越强,为使蛋白质等生物分子洗脱,流动相合机溶剂的含量较高,疏水性过强,会导致生物分子的不可逆吸附和生物活性损失,因此短链烷基固定相(C4、C8、苯基等)在生物大分子分离中表现出优势。对多数小蛋白,在低pH乙腈/水梯度下,用C3~C8色谱柱分离,使蛋白完全展开并避免聚集或沉淀,能够得到理想的分离结果.
在低pH流动相条件下进行分离,如(0.1% TFA适合于大多数样品,10~25mmol/L磷酸对疏水性强的蛋白质更有利;以乙腈作有机溶剂,丙醇可能对疏水性强的蛋白质有利;柱温50~80℃;将样品溶于6mol/L尿素或盐酸胍中(只可在室温)进行预处理;用疏水性更强的键合相(长链与短链烷基键合相);加两性表面活件剂分离大分子和疏水性强的蛋白质等实验条件有利于蛋白质样品完全变性或尽可能降低变性。
色谱法的基本原理
利用样品混合物中各组分理、化性质的差异,各组分程度不同的分配到互不相溶的两相中。当两相相对运动时,各组分在两相中反复多次重新分配,结果使混合物得到分离。
两相中,固定不动的一相称固定相;移动的一相称流动相。
分类:
根据流动相分—以气体作流动相—气相色谱——固定相为液体 气-液色谱
固定相为固体 气-固色谱
—以液体作流动相—液相色谱——固定相为液体 液-液色谱
固定相为固体 液-固色谱
—当流动相是在接近它的临界温度和压力下工作的液体时——超临界色谱
根据固定相的附着方式
—固定相装在圆柱管中—柱色谱
—固定相涂敷在玻璃或金属板上—薄膜色谱(平板色谱)
—液体固定相涂在纸上—纸色谱(平板色谱)
根据分离机理
—分配色谱—样品组分的分配系数不同
—吸附色谱— 样品组分对固定相表面吸附力不同
—体积排阻色谱—利用固定相孔径不同,把样品组分按分子大小分开
—离子交换色谱—不同离子与固定相商相反电荷间的作用力大小不同
根据极性
—流动相极性>固定相极性-反相色谱
—流动相极性<固定相极性-正相色谱
气相色谱只适合分析较易挥发、且化学性质稳定的有机化合物,而HPLC则适合于分析那些用气相色谱难以分析的物质,如挥发性差、极性强、具有生物活性、热稳定性差的物质。所以,HPLC的应用范围已经远远超过气相色谱。
一、吸附色谱(adsorption chromatography)
又叫液固色谱法:流动相是液体,固定相是固体。
分离原理:固定相是固体吸附剂,吸附剂是多孔性微粒物质表面有吸附中心。样品组分与流动相竞争吸附中 心。各组分的吸附能力不同,使组分在固定相中产生保留时间不同和实现分离。
固定相: 固定相通常是强极性的硅胶、氧化铝、活性炭、聚乙烯、聚酰胺等固体吸附剂。活性硅胶最常用。
流动相: 弱极性有机溶剂或非极性溶剂与极性溶剂的混合物,如正构烷烃(己烷、戊烷、庚烷等)、二氯甲 烷/甲醇、乙酸乙酯/乙腈等。
应用: 对于极性,结构异构体分离和族分离仍是最有效的方法,如农药异构体分离、石油中烷、烯、芳烃的 分离。 缺点是容易产生不对称峰和拖尾现象。
二、分配色谱
原理: 固定液机械的吸附在惰性载体上,样品分子依据他们在流动相和固定相间的溶解度不同,分别进入两相分配而实现分离。
固定相:将一种极性或非极性固定液吸附在惰性固相载体上。如全多孔微粒硅胶吸附剂。
根据极性不同分类:正相分配色谱—固定相载体上涂布的是极性固定液;
流动相是非极性溶剂;
可分立极性较强的水溶性样品;
弱极性组分先洗脱出来。
反相分配色谱—固定相载体上涂布的是非极性或弱极性固定液;
流动相是极性溶剂;
强极性组分先洗脱出来。
液-液分配色谱固定相中的固定液体往往容易溶解到流动相中去,所以重现性很差,且不能进行梯度洗脱,已经不大为人们所采用。
三、键合相色谱
考虑分配色谱法中固定液的缺点,因此将各种不同的有机关能团通过化学反应共价结合到固定相惰性载体上,固定相就不会溶解到流动相中去了。
键合固定相优点:○ 对极性有机溶剂有良好的化学稳定性
○使色谱柱的柱效高、寿命长
○实验重现性好
○几乎适于各种类相的有机化合物的分离,尤其是k’宽范围的样品
○可以梯度洗脱
根据极性不同分类:正相键合相色谱—固定相极性>流动相极性
固定相:二醇基、醚基、氰基、氨基等极性基团的有机分子。
适于分离脂荣、水溶性的极性、强极性化合物
反相键合相色谱—固定相极性<流动相极性
固定相:烷基、苯基等非极性有机分子。如最常用的ODS柱或C18柱就 是最典型的代表,其极性很小。
适于分离非机性、弱极性离子型样品,
是当今液相色谱的最主要分离模式。
正相HPLC(normal phase HPLC):
是由极性固定相和非极性(或弱极性)流动相所组成的HPLC体系。其代表性的固定相是改性硅胶、氰基柱等,代表性的流动相是正己烷。吸附色谱也属正相HPLC。
反相HPLC(reversed phase HPLC):
由非极性固定相和极性流动相所组成的液相色谱体系,与正相HPLC体系正好相反。其代表性的固定相是十八烷基键合硅胶(ODS柱,Octa Decyltrichloro Silane),代表性的流动相是甲醇和乙腈。
四、体积排阻色谱(SEC,size exclusion chromatograghy)
(又称凝胶色谱和分子筛色谱)
原理: 以多孔凝胶(如葡萄糖,琼脂糖,硅胶,聚丙烯酰胺等)作固定相,依据样品分子量大小达到分离目 的。大分子不进入凝胶孔洞,沿多孔凝胶胶粒间隙流出,先被洗脱;小分子进入大部分凝胶孔洞, 在柱中被强滞留,后被洗脱。
根据样品性质分类:凝胶过滤(GFC)—用于分析水溶性样品,如多肽、蛋白、生物酶、寡聚核苷酸、多聚核 苷酸、多糖。
凝胶渗透(GPC)—用于分析脂溶性样品,如测定高聚物的分子量。
SEC主要依据分子量大小进行分离,因此与样品、流动相间的相互作用无关。因此不采用改变流动相的组成来改善分离度。
五、离子交换色谱
(ion exchange chromatography, IEC)
分离原理:使用表面有离子交换基团的离子交换剂作为固定相。带负电荷的交换基团(如磺酸基和羧酸基)可以用于阳离子的分离;带正电荷的交换基团(如季胺盐)可以用于阴离子的分离。不同离子与交换基的作用力大小不同,在树脂中的保留时间长短不同,从而被相互分离。
3,什么是反相色谱分离系统
在液相色谱系统,反相及正相色谱系统是一个最基本的概念。
液相色谱有两项,流动相和固定相;如果流动相的极性大于固定相的极性,我们称之为反相色谱;如果固定相的极性大于流动相,则称为正相色谱。
目前在经典的反相色谱系统中,一般流动相采用甲醇+水、乙腈+水等模式,而固定相采用C18柱
而在正相色谱系统中,固定相一般是多孔硅胶微球表面嫁接带氨基或氰基的基团,流动相采用相对极性很弱的正己烷等。
4,何为正相色谱及反相色谱?在应用上有何特点?
正相色谱基本上可以看作液固吸附色谱。其柱填料为吸附剂,表面有活性吸附点。溶剂和溶质分子可以吸附在活性中心。反相色谱是流动相极性大于固定相极性的色谱。反相色谱的应用特点:反相介质性能稳定。分离效率高,它能分离蛋白质、肽、氨基酸、核酸、甾体、脂类、脂肪酸、碳水化合物、生物碱等含有非极性基团的物质。正相色谱法的应用特点:全多孔型的微球型或无定型硅胶,然而,球形硅胶更适合于有效分离。用球形硅胶填充的正相柱具有较好的渗透性、较低的操作压力和较好的稳定性。扩展资料:反相色谱中最常用的有机溶剂有甲醇和乙腈。此外,乙醇、四氢呋喃、异丙醇和二氧六环等常用作改性剂。有机溶剂的梯度也会影响分辨率。梯度越小,分辨率越大。正相色谱的保留机理类似于吸附过程。极性样品分子和溶剂分子吸附在柱填料表面的极性基团(吸附剂)上。对于常用于正相的氰基、氨基或二醇基固定相柱,吸附中心通常为键合配体或硅烷。在使用硅胶时,吸附位点为硅烷醇(一SiOH)。参考资料来源:百度百科-反相色谱参考资料来源:百度百科-正相色谱
5,什么是正相色谱和反相色谱
正相色谱基本上可以被看做是液固吸附色谱,其柱填料是吸附剂,其表面上分布有活性吸附位点,溶剂和溶质分子均能被吸附于活性位点上。由于相互作用力有大有小,溶剂分子与溶质分子、溶质分子相互之间又存在竞争吸附,从而造成了在柱内保留时间的差异,使不同物质得到分离。流动相极性大于固定相极性的情况,称为反相色谱。非极性键合相色谱可作反相色谱。在现代液相色谱中应用最广泛,现代液相色谱分析工作的70%以上是在非极性键合固定相上进行的。反相介质性能稳定。分离效率高,可分离蛋白质、肽、氨基酸、核酸等含有非极性基团的各种物质。扩展资料在正相色谱中,样品分子与载体基质的硅醇基团发生特异的极性相互作用,与固定相产生强极性相互作用的极性样品分子比较难被洗脱,在柱内停留比较长的时间,反之,极性较弱或非极性分子与硅胶之间产生相对较弱的相互作用,比较容易被洗脱,因而在柱内停留的时间较短。正相色谱的保留机理类似于吸附过程。极性样品分子和溶剂分子吸附在柱填料表面的极性基团上。对于正相中经常选用的氰基、氨基或二醇基固定相柱,吸附位点通常为键合相配体或硅烷醇。
6,什么是正相色谱,反向色谱,ge各有什么特征和应用范围
以极性物质做固定相,非极性物质作流动相,即流动相的极性<固定相的极性。正相色谱适用于极性化合物的分离,极性小的先出柱,极性大的后出柱。
液相色谱有正相和反相之分。正相色谱和反相色谱还有吸附色谱和极性化学键键合色谱之分。如果采用固定相的极性大于流动相的极性,就称为正相色谱;如果固定相的极性小于流动相的极性,则称为反相色谱。由于极性化合物更容易被极性固定相所保留,所以正相色谱系统一般适用于分离极性化合物,极性小的组分先流出。相反,反相色谱系统一般适用于分离非极性或弱极性化合物,极性大的组分先流出。 另外,其他有些色谱如柱色谱也有正反相之分。
7,什么是正相色谱,反向色谱,ge各有什么特征和应用范围
以极性物质做固定相,非极性物质作流动相,即流动相的极性<固定相的极性。正相色谱适用于极性化合物的分离,极性小的先出柱,极性大的后出柱。
液相色谱有正相和反相之分。正相色谱和反相色谱还有吸附色谱和极性化学键键合色谱之分。如果采用固定相的极性大于流动相的极性,就称为正相色谱;如果固定相的极性小于流动相的极性,则称为反相色谱。由于极性化合物更容易被极性固定相所保留,所以正相色谱系统一般适用于分离极性化合物,极性小的组分先流出。相反,反相色谱系统一般适用于分离非极性或弱极性化合物,极性大的组分先流出。
另外,其他有些色谱如柱色谱也有正反相之分。
8,何为正相色谱及反相色谱?在应用上有何特点?
根据流动相极性的强弱来区分。反相还是正相,是根据流动相相对于固定相的极性而言的。流动相极性强于固定相的,称作反相色谱,流动相极性弱于固定相的,称作正相色谱。 反相色谱流动相的极性强,容易带着极性分子走,而留下非极性分子。这主要用于非极性样品的分离,常用的高压液相色谱都是这种。也有人喜欢说反相液相色谱,其实是一个意思。就是显得博学一点。反相色谱主要是以水等极性物质作为流动相,按相似相容原理,出峰先后是从极性强的到极性弱的,而正相色谱的流动相大多为非极性物质。出峰先后则是从弱极性的到强极性的。最直观的是看固定相和流动相的极性差异,另外也要看你想要实现拆分的物质极性与固定相和流动相的极性差异。在忽略掉空间结构的前提下,主要依靠极性大小导致相互作用能差,进而实现有效拆分。