尊旭网
当前位置: 尊旭网 > 知识 >

标签抗体

时间:2024-07-19 20:33:35 编辑:阿旭

内参抗体和标签抗体有哪些

内参抗体(Internal
Control
Antibody)是对内参蛋白进行检测,以校正蛋白定量过程中的实验误差以及验证转膜、显色等步骤是否正常!常用的内参包含
GAPDH、β-actin和
β-tubulin;及线粒体内参
COX
IV和核内参
Histone
H3和
PCNA等
内参抗体:
Beta-Actin
mAb
(1C7)
细胞总蛋白
42
kD
Abbkine
A01010
小鼠源单克隆
Beta-Actin
mAb
(1C7)
,
HRP
细胞总蛋白
42
kD
Abbkine
A01015
小鼠源单克隆,HRP偶联
GAPDH
mAb
(2B5)
细胞总蛋白
36
kD
Abbkine
A01020
小鼠源单克隆
GAPDH
mAb
(2B5)
,
HRP
细胞总蛋白
36
kD
Abbkine
A01025
小鼠源单克隆,HRP偶联
Beta-Tubuline
mAb
(3G6)
细胞总蛋白
55
kD
Abbkine
A01030
小鼠源单克隆
Plant
Actin
mAb
(3T3)
植物细胞总蛋白
42
kD
Abbkine
A01050
小鼠源单克隆
PCNA
mAb
(1D7)
细胞核蛋白
28
kD
Abbkine
A01040
小鼠源单克隆
COX
IV
mAb
(14Y2)
细胞线粒体总蛋白
16
kD
Abbkine
A01060
小鼠源单克隆
Histone
H3
mAb
(2D10)
细胞核蛋白
18
kD
Abbkine
A01070
小鼠源单克隆
标签抗体(Tag
Antibody)可用于检测各种商品化表达载体上的标签序列(如:
Myc、Flag、His、GST、HA等),籍以分析目的蛋白的表达含量及其功能;
标签抗体:
Anti-Biotin
Antibodies
Anti-Dye
Antibodies
Anti-FITC
Antibodies
Anti-Fluorescent
Protein
Antibodies
Anti-HRP
Antibodies
Beta
Galatosidase
Antibodies
FLAG
Tag
Antibodies
GST
Tag
Antibodies
HA
Tag
Antibodies
His
Tag
Antibodies
Myc
Tag
Antibodies
TAP
Tag
Antibodies
V5
Tag
Antibodies


标签抗体的主要类别

融合标签,如Flag、GST等标签的使用可以简化蛋白质的纯化过程、控制蛋白质固定的空间取向及方便检测、使体内生物事件可视化、提高重组蛋白质的产量、增强重组蛋白质的可溶性和稳定性等。常用的标签包括myc、HA、Flag、His、GST等。其中Flag标签系统利用一个短的亲水性八氨基酸肽(DYKDDDDK)融合到目标蛋白。Flag标签可位于蛋白质的C端或N端,该系统已广泛应用于各种细胞类型,包括细菌、酵母和哺乳动物细胞等,相应的Flag标签抗体也被广泛应用。由于Flag标签系统的纯化条件是非变性的,因此可以纯化所有有活性的融合蛋白。Flag标签可以通过加入肠激酶处理去除,肠激酶专一识别该肽序列C末端的5个氨基酸残基。Flag抗体可以用于检测和Flag标签融合表达蛋白的表达、细胞内定位,以及纯化、定性或定量检测Flag融合表达蛋白等。 融合标签根据其相对分子质量大小可以分为两大类:大的蛋白质分子和小的多肽片段。融合标签的使用可以简化蛋白质的纯化过程、控制蛋白质固定的空间取向及方便检测、使体内生物事件可视化、提高重组蛋白质的产量、增强重组蛋白质的可溶性和稳定性等。His标签是由6个组氨酸(His-His-His-His-His-His)组成的短肽,专门设计用于重组蛋白质的吸附纯化。由于分子量较小,并且较容易分离和纯化,His融合标签与其他标签相比有很多明显优势,是目前用于纯化的融合标签中使用最为广泛的一种。利用 His标签可以建立一个基于融合蛋白的高效检测和纯化系统。His抗体可以用于检测和His标签融合表达蛋白的表达、细胞内定位,以及纯化、定性或定量检测His融合表达蛋白等。 随着越来越多的新基因的发现,基因融合蛋白表达体系以其在新发现蛋白研究中的显著优势已得到广泛应用。其中GST标签体系具有蛋白表达产率高、表达产物纯化方便,以及利于GST抗体制备等特点。GST融合蛋白在水溶液中可溶,可从细菌裂解液中提取,在不变性的条件下通过亲和层析得到。GST融合蛋白可被位点特异性蛋白酶裂解,从而除去GST蛋白。融合蛋白又是一个非常好的强免疫原,因此,很容易制备抗新蛋白的抗体。正是由于以上的优点,商品化的GST融合蛋白表达体系以及GST标签抗体系统至今仍被广泛应用。近年来在原核表达体系中,谷胱甘肽S转移酶GST表达纯化系统的应用更为普遍。用GST融合表达系统表达外源基因时,对融合表达产物的检测和纯化非常重要,这里面就包括了GST标签抗体的应用。 常用的标签包括GFP、HA、Flag、His、GST等。其中绿色萤光蛋白(Green Fluorescent Protein),简称GFP,这种蛋白质最早是由下村脩等人在1962年在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。GFP或其突变体EGFP等被广泛用于基因表达效率的检测,以及和目的蛋白融合表达用于检测目的蛋白的表达和分布。一般来说,GFP抗体不仅可以检测GFP或其适当的突变体,也可以检测和GFP或其适当的突变体融合表达蛋白的表达、细胞内定位,以及纯化、定性或定量检测GFP融合表达蛋白等。GFP标签可位于蛋白质的C端或N端,该系统已广泛应用于各种细胞类型,包括细菌、酵母和哺乳动物细胞等,相应的GFP标签抗体也被广泛应用。 随着蛋白质组学的迅猛发展,重组蛋白质的使用在近年来大大增加。重组杂合体含有一个亲和标签如GST、Myc、His等,可用于辅助目标蛋白的纯化,这已经被广泛使用。利用融合蛋白有助于重组蛋白纯化和检测的这个有点被广泛认可。在1985年开发出鼠抗c-myc标签抗体并被作为免疫化学试剂用于细胞生物学和蛋白质工程领域中。Myc标签(序列为:EQKLISEEDL)已成功应用于WB杂交技术、免疫沉淀IP和流式细胞术中。因此可用于检测重组蛋白在细菌、酵母、昆虫细胞和哺乳细胞中的表达情况。Myc重组蛋白质可通过偶联Myc标签抗体到二乙烯砜活化的琼脂糖上而进行亲和纯化。Myc标签可放在C端或N端,但Myc重组蛋白的低pH洗脱条件往往会降低蛋白质的活力,因此Myc标签系统广泛应用于检测但很少用于纯化。 融合标签,如HA、His等标签的使用可以简化蛋白质的纯化过程、控制蛋白质固定的空间取向及方便检测、使体内生物事件可视化、提高重组蛋白质的产量、增强重组蛋白质的可溶性和稳定性等。常用的标签包括myc、HA、Flag、His、GST等。其中HA标签系统利用一个HA (influenza hemagglutinin epitope: YPYDVPDYA)短肽肽融合到目标蛋白。HA标签可位于蛋白质的C端或N端,该系统已广泛应用于多种细胞类型,相应的HA标签抗体也被广泛应用。HA标签抗体能特异识别C末端或N末端带有HA标签(HA-tagged)的融合蛋白。

几种常用的蛋白标签的功能和优点

重组蛋白表达技术现已经广泛应用于生物学各个具体领域。特别是体内功能研究和蛋白质的大规模生产都需要应用重组蛋白表达载体。上周小知了给大家简单介绍了大肠杆菌原核表达的整体思路,这里给大家简要介绍几个常用的蛋白标签及其功能和优点。

GST(谷胱甘肽巯基转移酶) 标签蛋白本身是一个在解毒过程中起到重要作用的转移酶,它的天然大小为26KD。将它应用在原核表达的原因大致有两个,一是因为它是一个高度可溶的蛋白,希望可以利用它增加外源蛋白的可溶性;另一个是它可以在大肠杆菌中大量表达,起到提高表达量的作用。

GST融合表达系统广泛应用于各种融合蛋白的表达,可以在大肠杆菌和酵母菌等宿主细胞中表达。结合的融合蛋白在非变性条件下用10mM 还原型谷胱甘肽洗脱。

在大多数情况下,融合蛋白在水溶液中是可溶的,并形成二体。GST标签可用酶学分析或免疫分析很方便的检测。标签有助于保护重组蛋白免受胞外蛋白酶的降解并提高其稳定性。在大多数情况下GST融合蛋白是完全或部分可溶的。

纯化:该表达系统表达的GST标签蛋白可直接从细菌裂解液中利用含有还原型谷胱甘肽琼脂糖凝胶(Glutathionesepharose)亲和树脂进行纯化。GST标签蛋白可在温和、非变性条件下洗脱,因此保留了蛋白的抗原性和生物活性。GST在变性条件下会失去对谷胱甘肽树脂的结合能力,因此不能在纯化缓冲液中加入强变性剂如:盐酸胍或尿素等。

如果要去除GST融合部分,可用位点特异性蛋白酶切除。

检测:可用GST抗体或表达的目的蛋白特异性抗体检测。

6×His是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。

使用His-tag有以下几个优点:

1.标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能;

2.His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性;

3.His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究;

4.His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫制备抗体;

5.可应用于多种表达系统,纯化的条件温和;

6.可以和其它的亲和标签一起构建双亲和标签。

MBP(麦芽糖结合蛋白)标签蛋白大小为40kDa,由大肠杆菌K12的malE基因编码。MBP可增加在细菌中过量表达的融合蛋白的溶解性,尤其是真核蛋白。MBP标签可通过免疫分析很方便地检测。有必要用位点专一的蛋白酶切割标签。如果蛋白在细菌中表达,MBP可以融合在蛋白的N端或C端。

纯化:融合蛋白可通过交联淀粉亲和层析一步纯化。结合的融合蛋白可用10mM麦芽糖在生理缓冲液中进行洗脱。结合亲和力在微摩尔范围。一些融合蛋白在0.2% Triton X-100或0.25% Tween 20存在下不能有效结合,而其他融合蛋白则不受影响。 缓冲条件为pH7.0到8.5,盐浓度可高达1M,但不能使用变性剂。如果要去除MBP融合部分,可用位点特异性蛋白酶切除。

检测:可用MBP抗体或表达的目的蛋白特异性抗体检测。

Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。

使用Flag标签的优点:

FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点:

1.FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。

2.融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。

3.FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。

4.融合在N端的FLAG,其可以被肠激酶切除(DDDK),从而得到特异的目的蛋白。因此现FLAG标签已广泛的应用于蛋白表达、纯化、鉴定、功能研究及其蛋白相互作用等相关领域。

SUMO标签蛋白是一种小分子泛素样修饰蛋白(Small ubiquitin-likemodifier),是泛素(ubiquitin)类多肽链超家族的重要成员之一。

在一级结构上,SUMO与泛素只有18%的同源性,然而两者的三级结构及其生物学功能却十分相似。研究发现SUMO可以作为重组蛋白表达的融合标签和分子伴侣,不但可以进一步提高融合蛋白的表达量,且具有抗蛋白酶水解以及促进靶蛋白正确折叠,提高重组蛋白可溶性等功能。

此外SUMO还有一项重要的应用,就是可用于完整地切除标签蛋白,得到天然蛋白。因为SUMO蛋白水解酶能识别完整的SUMO标签蛋白序列,并能高效地把SUMO从融合蛋白上切割下来。切除SUMO后,经过亲和层析,去除标签蛋白部分,就得到和天然蛋白一样的重组蛋白。所以SUMO标签也常用于和其他标签一起应用,作为特异酶切水解位点。

C-Myc标签蛋白,是一个含11个氨基酸的小标签,标签序列Glu-Gln-Lys-Leu-Ile-Ser-Glu-Glu-Asp-Leu,这11个氨基酸作为抗原表位表达在不同的蛋白质框架中仍可识别其相应抗体。C-Myc tag已成功应用在 Western-blot杂交技术、免疫沉淀和流式细胞计量术中, 可用于检测重组蛋白质在靶细胞中的表达。

分别是增强型绿色荧光蛋白/增强型黄绿色荧光蛋白/增强型黄绿色荧光蛋白/单体红色荧光蛋白,具有不同的激发波长发射波长为,均由野生型荧光蛋白通过氨基酸突变和密码子优化而来。

就eGFP而言,相对于GFP,其荧光强度更强、荧光性质更稳定。同时载体中构建的Kozak序列使得含有eGFP的融合蛋白在真核表达系统中表达效率更高。

mCherry是从DsRed演化来的性能最好的一个单体红色荧光蛋白,可以和GFP系列荧光蛋白共用,实现多色标记体内、外实验表明,mCherry在N端和C端融合外源蛋白时,荧光蛋白活性和被融合的目标蛋白功能相互没有明显影响。

蛋白标签是指与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。我们在选用不同标签时要搞清楚自己的需求,灵活运用各个标签。


HRP(辣根过氧化物酶)标记抗体的原理及操作流程是什么具体怎么弄

HRP标记抗体的方法:根据酶的结构不同可采用不同的方法。对于制备HRP结合物,可用戊二醛二步法和过碘酸钠法。尤以简易过碘酸钠法更为常用。 戊二醛二步法原理:戊二醛为一种双功能试剂,通过其醛基分别与酶和免疫球蛋白上的氨基共价结合,形成酶-戊二醛-免疫球蛋白结合物。在不断搅拌下,每升滤液中慢慢加入226克硫酸铵粉末(相当于0.40饱和度),大约在1~2小时内加完,置冷室中放置过夜。次日将上清液小心地用虹吸管移出,下面浑浊液以3000转/分离心15分钟,弃沉淀,合并上清液。再按每升上清液加258克硫酸铵粉末(0.8饱和度)随加随搅拌,当硫酸铵全部溶解后,置冷室过夜。次日,虹吸出上清液,沉淀部分在冰冻离心机中以13000转/分离心20分钟,弃去上清液,收集沉淀。扩展资料:1、 8mg辣根过氧化物酶放入1ml玻璃瓶,加入1ml双蒸水溶解,液体呈棕色。2、放入一个磁力搅拌子,电磁搅拌同时逐滴缓缓加入新配制的NaIO40.2ml,室温下继续搅拌40min,液体呈现草绿色。3、将全部溶液用滴管装入反复用去离子水冲洗的透析袋中,4oC对1 mMpH4.4的NaAc透析过夜,中间换液3-4次,每次300ml,溶液最终呈浅棕色。4、按照酶:抗体=1:1的比例准备抗体,抗体浓度不小于2mg/ml。5、对0.01MNa2CO3透析过夜,中间换液3-4次。6、将透析好的HRP溶液(浅棕色)装入玻璃瓶,加入0.2MNa2CO3溶液将pH调整至9.0,混匀后立即加入透析好的抗体,边加边用电磁搅拌器搅拌。7、MNa2CO3溶液将HRP/抗体混合物的pH调整至9.0(9-10之间就可以),室温继续搅拌3hr。8、入新配制的硼氢化钠溶液100ul,4oC放置2hr。9、4oC,1×PBS中充分透析,每2hr换液一次,共换4次。参考资料来源:百度百科 ——酶标抗体制备技术

HRP(辣根过氧化物酶)标记抗体的原理及操作流程是什么 具体怎么弄

HRP标记抗体的方法:根据酶的结构不同可采用不同的方法。对于制备HRP结合物,可用戊二醛二步法和过碘酸钠法。尤以简易过碘酸钠法更为常用。 戊二醛二步法原理:戊二醛为一种双功能试剂,通过其醛基分别与酶和免疫球蛋白上的氨基共价结合,形成酶-戊二醛-免疫球蛋白结合物。在不断搅拌下,每升滤液中慢慢加入226克硫酸铵粉末(相当于0.40饱和度),大约在1~2小时内加完,置冷室中放置过夜。次日将上清液小心地用虹吸管移出,下面浑浊液以3000转/分离心15分钟,弃沉淀,合并上清液。再按每升上清液加258克硫酸铵粉末(0.8饱和度)随加随搅拌,当硫酸铵全部溶解后,置冷室过夜。次日,虹吸出上清液,沉淀部分在冰冻离心机中以13000转/分离心20分钟,弃去上清液,收集沉淀。扩展资料:1、 8 mg 辣根过氧化物酶放入1 ml玻璃瓶,加入1 ml双蒸水溶解,液体呈棕色。2、放入一个磁力搅拌子,电磁搅拌同时逐滴缓缓加入新配制的 NaIO4 0.2 ml,室温下继续搅拌40 min,液体呈现草绿色。3、将全部溶液用滴管装入反复用去离子水冲洗的透析袋中,4 oC 对1 mM pH 4.4的NaAc透析过夜,中间换液3-4次,每次300 ml,溶液最终呈浅棕色。4、按照酶:抗体=1:1的比例准备抗体,抗体浓度不小于2 mg/ml。5、对0.01 M Na2CO3透析过夜,中间换液3-4次。6、将透析好的HRP溶液(浅棕色)装入玻璃瓶,加入0.2 M Na2CO3溶液将pH调整至9.0, 混匀后立即加入透析好的抗体,边加边用电磁搅拌器搅拌。7、M Na2CO3溶液将HRP/抗体混合物的pH调整至9.0(9-10之间就可以),室温继续搅拌3hr。8、入新配制的硼氢化钠溶液100 ul,4 oC放置2 hr。9、4 oC,1×PBS中充分透析,每2hr换液一次,共换4 次。参考资料来源:百度百科 ——酶标抗体制备技术

pcdna-3.1-ha上的ha标签对蛋白活性影响大吗

标签蛋白抗体是一类经过亲和纯化的小鼠单克隆抗体。用于检测各种商品化表达载体上的标签序列(如:MyC、His、GST、HA等),籍以分析检目的蛋白的表达含量及其功能。其原理是抗原—抗体反应,这些标签抗体可以高度特异地结合对应的标签融合蛋白。标签抗体是开展基因蛋白表达、信号转导和基因功能研究的常用工具。
百度上的,,,,,搬运