尊旭网
当前位置: 尊旭网 > 知识 >

生物质能利用

时间:2024-07-25 00:06:12 编辑:阿旭

生物质能的主要利用形式包括什么?

生物质能的主要利用形式包括直接燃烧、热化学转换和生物化学转换等3种途径。1、直接燃烧当前改造热效率仅为10%左右的传统烧柴灶,推广效率可达20%-30%的节柴灶这种技术简单、易于推广、效益明显的节能措施,被国家列为农村新能源建设的重点任务之一。生物质的直接燃烧和固化成型技术的研究开发主要着重于专用燃烧设备的设计和生物质成型物的应用。现已成功开发的成型技术按成型物形状主要分为大三类:以日本为代表开发的螺旋挤压生产棒状成型物技术,欧洲各国开发的活塞式挤压制的圆柱块状成型技术,以及美国开发研究的内压滚筒颗粒状成型技术和设备。2、热化学转换是指在一定的温度和条件下,使生物质气化、炭化、热解和催化液化,以生产气态燃料、液态燃料和化学物质的技术。①生物质气化:生物质气化技术是将固体生物质置于气化炉内加热,同时通入空气、氧气或水蒸气,来产生品位较高的可燃气体。它的特点是气化率可达70%以上,热效率也可达85%。生物质气化生成的可燃气经过处理可用于合成、取暖、发电等不同用途,这对于生物质原料丰富的偏远山区意义十分重大,不仅能改变他们的生活质量,而且也能够提高用能效率,节约能源。②生物质碳化生物质颗粒碳化燃料是各种生物质经过干燥、转性、混料、成型、碳化等复杂过程连续生产出来的一种新型燃料,其与煤性质相同,是可供各种燃烧机、生物质锅炉、熔解炉、生物质发电等的高效、可再生、环保生物质燃料,此种燃料在国际认证为零污染燃料。③生物质热解通常是指在无氧或低氧环境下,生物质被加热升温引起分子分解产生焦炭、可冷凝液体和气体产物的过程,是生物质能的一种重要利用形式。3、生物质化学转换通过生物质的厌氧发酵制取甲烷,用热解法生成燃料气、生物油和生物炭,用生物质制造乙醇和甲醇燃料,包括有机物质-沼气转换和生物质-乙醇转换等。沼气转化是有机物质在厌氧环境中,通过微生物发酵产生一种以甲烷为主要成分的可燃性混合气体即沼气。乙醇转换是利用糖质、淀粉和纤维素等原料经发酵制成乙醇。生物制氢,生物质通过气化和微生物催化脱氢方法制氢。

生物质能的利用方式

生物质能的利用主要有直接燃烧、热化学转换和生物化学转换等3种途径。1、直接燃烧:生物质的直接燃烧在今后相当长的时间内仍将是我国生物质能利用的主要方式。当前改造热效率仅为10%左右的传统烧柴灶,推广效率可达20%至30%的节柴灶这种技术简单、易于推广、效益明显的节能措施,被国家列为农村新能源建设的重点任务之一。2、热化学转化:生物质的热化学转换是指在一定的温度和条件下,使生物质汽化、炭化、热解和催化液化,以生产气态燃料、液态燃料和化学物质的技术。3、生物化学转换:生物质的生物化学转换包括有生物质、沼气转换和生物质、乙醇转换等。沼气转化是有机物质在厌氧环境中,通过微生物发酵产生一种以甲烷为主要成分的可燃性混合气体即沼气。乙醇转换是利用糖质、淀粉和纤维素等原料经发酵制成乙醇。


生物质能的主要利用形式包括哪些?

生物质能的主要利用形式包括直接燃烧和发电、生物质裂解与干馏、生物质致密成型、生物质气化及发电、生物质热解液化、燃料乙醇、生物柴油 、能源作物。1、直接燃烧和发电:直接燃烧大致可分炉灶燃烧、锅炉燃烧、垃圾焚烧和致密成型燃料燃烧四种情况。我国小型生物质燃烧发电也已商业化,南方地区的许多糖厂利用甘蔗渣发电。广东、广西两地共有小型发电机组380台,总装机容量达800兆瓦,云南省也有一些此类电厂。2、生物柴油:目前我国生物柴油研究开发尚处于起步阶段。先后有上海内燃机研究所和贵州山地农机所、中国农业工程研究设计院、辽宁省能源研究所、中国科技大学、河南科学院化学所、华东理工大学、云南师范大学农村能源工程重点实验室等单位都对生物柴油作了不同程度的研究,并取得可喜的成绩。3、生物质致密成型:致密成型燃料燃烧是把生物质固化成型后再采用传统的燃煤设备燃用,主要优点是将分散和疏松的生物燃料进行集中和加密,以便于储存和运输,使之成为便捷和清洁高效的能源。主要缺点是生产成本偏高。4、生物质气化及发电:我国已开发出多种固定床和流化床小型气化炉,以秸秆、木屑、稻壳、树枝等为原料生产燃气,热值为4~10兆焦/立方米。目前用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处。兆瓦级生物质气化发电系统已推广应用20多套。“十五”期间,按照国家高科技发展计划(863计划)已建成4兆瓦规模生物质气化发电的示范工程。5、能源作物:能源作物种植是近期发展起来的新型产业,是随着生物质能开发与利用的不断深入和扩大逐步形成的。能源作物是指各种用以提供能源的植物,通常包括速生薪炭林、能榨油或产油的植物、可供厌氧发酵用的藻类和其它植物等。许多能源作物是自然生长的,收集比较困难。现在人们有意识地培育一些能源作物,经过嫁接、驯化、繁殖,不断提高产量,以满足对能源不断增长的需要。甜高粱就是一种很好的能源作物。

生物质能如何利用?

利用现代技术,将生物质转化为能量可以通过直接燃烧的方法,也可用生化学和热化学法转化成气体、液体和固体燃烧,例如,木材、草类、农作物等。利用生物质能可进行乙醇、甲醇、甲烷、植物油、汽油、氢等的工业生产。目前使用的转换技术主要是生物质厌氧消化生产沼气;生产质发酵制造酒精;生物质热分解气化等。
生物质能的转换技术具体说,大致可分为以下三类:直接燃烧;生物转换技术;化学转换技术。此外,生物质还可通过多种煤气发生炉转化为可燃煤气。从长远看,绿色能源的开发利用,必将是跨世纪的大趋势,而且可以预见,21世纪生物质能技术的发展,必将取得令人鼓舞的进步。


生物质能利用是怎样的?

生物质能是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。人类最早使用的能源就是生物质能。直到第一次产业革命之前,世界各国的能源需求大部分都是通过薪柴来实现的。目前,它们依然占全世界能源构成的12%。对于发展中国家来说,它们主要靠木柴和木炭的形式获取能量。联合国的一项统计资料显示,一些发展中国家生物质燃料占其全部能源消费的构成约为35%,居其他各种能源之首。专家们估计,今后生物质能的利用肯定会有所发展,但发展的方向和以前不同。今后的发展方向主要是依靠热化学转换技术、生物化学转换技术、生物质压块细密成型技术和化学转换技术等新技术提取或置换出木柴和森林工业废弃物、农业废弃物、水生植物、油料植物、城市与工业有机废弃物和动物粪便中所蕴藏的能量,变废为宝,化腐朽为神奇,而不是靠继续燃烧薪柴来获取能量。发展生物质能新技术的前景是诱人的。地球表层生物质资源十分丰富,每年全球仅光合作用就可产生生物质1200亿吨,其中所含的能量约为当前全球能耗总量的5倍。因此,发展高效生物质燃烧炉的前景是可以肯定的。此外,生物质在微生物的发酵作用下生成沼气、酒精等能源产品的行业在未来将会得到进一步的发展。另外一项值得推荐的做法是在那些未用于(主要是不适于)生产粮食的边际土地上种植能源作物。专家们认为这是一种十分有前途的做法,它将带来多方面的收益。首先,它可以弥补能源供给之不足;其次,大多数土地被绿树所覆盖,还会带来固碳效益;第三,它可以替代目前的薪柴消费量,从而有利于保护森林资源和生态环境。

国外的生物质能利用则主要集中在把生物质转化为电力和把生物质转化为燃料方面

你好,是的,国外的生物质能利用则主要集中在把生物质转化为电力和把生物质转化为燃料方面,
这个是因为国外对生物质的利用侧重于把生物质转化成电力和优质燃料。近年来,生物质发电、燃料乙醇和生物持有等生物质能产业在世界范围变大【摘要】
国外的生物质能利用则主要集中在把生物质转化为电力和把生物质转化为燃料方面【提问】
你好,是的,国外的生物质能利用则主要集中在把生物质转化为电力和把生物质转化为燃料方面,
这个是因为国外对生物质的利用侧重于把生物质转化成电力和优质燃料。近年来,生物质发电、燃料乙醇和生物持有等生物质能产业在世界范围变大【回答】
希望可以帮到你【回答】
同学,答案已经发过去了,记得给老师一个赞然后回复1哦。让老师知道你收到答案了哦,如有不懂的,可继续咨询~
感谢感谢,祝福您阖家欢乐,生活愉快,万事如意,再次诚心感谢【回答】


生物质发电的主要过程

发电形式:1、直接燃烧发电:直接燃烧发电是将生物质在锅炉中直接燃烧,生产蒸汽带动蒸汽轮机及发电机发电。生物质直接燃烧发电的关键技术包括生物质原料预处理、锅炉防腐、锅炉的原料适用性及燃料效率、蒸汽轮机效率等技术。

2、混合发电:生物质还可以与煤混合作为燃料发电,称为生物质混合燃烧发电技术。混合燃烧方式主要有两种。一种是生物质直接与煤混合后投入燃烧,该方式对于燃料处理和燃烧设备要求较高,不是所有燃煤发电厂都能采用;一种是生物质气化产生的燃气与煤混合燃烧,这种混合燃烧系统中燃烧,产生的蒸汽一同送入汽轮机发电机组。

3、气化发电:生物质气化发电技术是指生物质在气化炉中转化为气体燃料,经净化后直接进入燃气机中燃烧发电或者直接进入燃料电池发电。气化发电的关键技术之一是燃气净化,气化出来的燃气都含有一定的杂质,包括灰分、焦炭和焦油等,需经过净化系统把杂质除去,以保证发电设备的正常运行。


生物质能发电的主要特点

生物质具可再生性、低污染性、低密度性,而且生物质能分布广泛,蕴藏量巨大,地球上光合作用每年生产约2.2×1011t干生物质,相当于全球能源消费总量的10倍左右。生物质能是人类赖以生存的重要能源,是仅次于煤炭、石油和天然气而居于世界能源消耗总量第四位的能源。生物质能源作为一种洁净而又可再生的能源,是唯一可替代化石能源转化成气态、液态和固态燃料以及其他化工原料或者产品的碳资源。

生物质能的利用方式

  生物质能的利用主要有直接燃烧、热化学转换和生物化学转换等3种途径。

  1、直接燃烧:生物质的直接燃烧在今后相当长的时间内仍将是我国生物质能利用的主要方式。当前改造热效率仅为10%左右的传统烧柴灶,推广效率可达20%至30%的节柴灶这种技术简单、易于推广、效益明显的节能措施,被国家列为农村新能源建设的重点任务之一。

  2、热化学转化:生物质的热化学转换是指在一定的温度和条件下,使生物质汽化、炭化、热解和催化液化,以生产气态燃料、液态燃料和化学物质的技术。

  3、生物化学转换:生物质的生物化学转换包括有生物质、沼气转换和生物质、乙醇转换等。沼气转化是有机物质在厌氧环境中,通过微生物发酵产生一种以甲烷为主要成分的可燃性混合气体即沼气。乙醇转换是利用糖质、淀粉和纤维素等原料经发酵制成乙醇。


生物质能如何才能得到充分利用、变废为宝?

在我见过的和经历过的经验里,生物质能可以通过以下方式得到充分利用。
生物质能可以通过发酵、气化等多种方式得到充分利用、变废为宝。
生物质能是指可再生的有机物,包括植物、动物、微生物以及其代谢产物等,具有丰富的资源和广泛的应用前景。
发酵是指利用微生物将生物质转化成有用物质的过程,例如制酒,制酸奶等。
气化则是将生物质转化为气体的过程,例如生物质燃气、生物质发电等。
随着全球能源问题的不断加剧,生物质能已成为备受关注的可再生能源。
生物质能的利用不仅可以解决日益紧张的能源问题,还可以缓解环境压力,减少二氧化碳的排放,达到可持续发展的目标。
因此,我们应该发挥生物质能的潜力,加大科技投入,推广先进技术,促进生物质能的持续利用、变废为宝。


根据沼气发酵微生物化学过程及其产物的特点,可把沼气发酵过程划分为哪几个阶段?

沼气发酵过程可分为以下三个阶段:
第一阶段是液化阶段。即由不产甲烷的微生物分泌的胞外酶,对有机物质进行体外酶解,把复杂的固体有机物质转变为可溶于水的物质。
第二阶段是产酸阶段。上述水解产物在产酸细菌的作用下,进一步将它们分解成小分子化合物,其中主要是挥发酸。所以将此阶段称为产酸阶段。
第三阶段是产甲烷阶段。这个阶段中,产氨细菌大量繁殖和活动,使发酵液中氨态氮浓度增加,挥发酸浓度下降,氧化还原势降低,为甲烷菌创造了适宜的生活环境。产甲烷菌大量繁殖,其分泌的酶将上述阶段分解出来的简单有机物质转变成甲烷和二氧化碳等,利用氢还原二氧化碳成甲烷,或利用其他细菌产生的甲酸形成甲烷。


生物质能发电主要利用什么为原料

生物质能发电主要利用农业、林业和工业废弃物、甚至城市垃圾为原料,采取直接燃烧或气化等方式发电,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电。目前生物质电厂都是以秸秆为主要原料,性质比较均一,如果是烧木头,一定是需要树皮粉碎。生物质能的应用技术开发,旨在把森林砍伐和木材加工剩余物以及农林剩余物如秸秆、麦草等原料,甚至是生活垃圾通过物理或化学化工的加工方法,使之成为高品位的能源,提高使用热效率,减少化石能源使用量,保护环境。能源发展方向由于受技术和自然条件的限制,目前对可再生能源大规模开发利用的主要是风能和生物质能。生物质能发电在可再生能源发电中电能质量好、可靠性高,与小水电、风能和太阳能发电等间歇性发电比较要好得多,具有很高的经济价值。用清洁可再生能源替代煤炭、石油,调整能源结构是我国近期的重要任务,而利用生物质能、风能等可再生能源发电正是我国能源结构调整最现实、最主要的方向。