联机分析处理对物流决策有什么作用
OLAP与数据挖掘DM具有本质区别(1)功能不同数据挖掘DM的功能在于知识发现KDD。如:数据挖掘DM中的“分类”包括:贝叶斯分类、粗糙集分类、决策树分类等,是从数据中发现知识规则,是“透过现象看本质”;而联机分析OLAP的功能在于“统计”和统计结果的展示,是“现象”和“表象”,不能实现数据挖掘DM的知识发现KDD功能。(2)数据组成不同数据挖是从混沌的、具有巨大噪声的数据中提炼知识规则;而联机分析OLAP只是从已经规范化的、纯净的关系数据库中组织数据。(3)知识与数据的关系不同数据挖掘DM是从数据中发现知识KDD;而联机分析OLAP是利用人已知的知识来有意识地组织和使用数据。(4)基本方法不同数据挖掘的基础是数学模型和算法;而OLAP不需要数学模型和算法支持,只与数据仓库和OLAP自身知识相关。
OLAP具有哪些功能
数据分析,多维分析首选FineBI!
多维OLAP分析是BI工具分析功能的集中体现,其应用特性主要体现在两方面:一是即时查询到效果(Online),这要求后台数据的计算速度和前台浏览器的展示速度都要很快;二是多维度自定义分析,这要求BI工具的多维数据库应该具有较大的灵活性,可以随用户的要求组合任意的指标和维度。只有同时满足这两个特性的交互分析过程,才是多维OLAP分析,才能保障用户即时看到其分析需求对应的数据统计结果,以及通过切换维度和改变条件等方式,满足根据上一步的结果即时产生的新的分析需求。
商业智能是什么?
BI (Business Intelligence 商业智能)
商业智能产品及解决方案大致可分为数据仓库产品、数据抽取产品、OLAP产品、展示产品、和集成以上几种产品的针对某个应用的整体解决方案等。商业智能的技术体系主要有数据仓库(DW)、在线分析处理(OLAP)以及数据挖掘(DM)三部分组成。数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。所谓数据仓库(DW)就是面向主题的、集成的、稳定的、 不同时间的数据集合,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。
数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策.
简单并综合的说,就是利用数据库里的大量数据来灵活的抽取成各种订制的报表类型,用来满足经营管理所需要的决策、预测的数据需求。
商业智能
商业智能(Business , BI),又称商业智能或商务智能,指用数据仓库技术、在线分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。商业智能通常可以将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。商业智能一般是一种解决方案,是ETL、数据仓库、在线分析处理(OLAP)、数据挖掘、数据展现等技术的综合运用。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换()和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理,最后将知识呈现给管理者,为管理者的决策过程提供支持。