尊旭网
当前位置: 尊旭网 > 知识 >

高考数学总复习资料

时间:2024-08-28 11:42:24 编辑:阿旭

2022高中学考知识点总结数学

  想要学好数学,关键在于多练习,熟能生巧,做的题目多了,自然就有了经验,下面是由我为大家整理的“2022高中学考知识点总结数学”,仅供参考,欢迎大家阅读本文。    高中数学知识点   立体几何初步   1、柱、锥、台、球的结构特征   (1)棱柱:   定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。   分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。   表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。   几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。   (2)棱锥   定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。   分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等   表示:用各顶点字母,如五棱锥   几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。   (3)棱台:   定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。   分类:以底面多边形的边数作为分类的标准分为三棱台、四棱台、五棱台等。   表示:用各顶点字母,如五棱台   几何特征:   ①上下底面是相似的平行多边形   ②侧面是梯形   ③侧棱交于原棱锥的顶点   (4)圆柱:   定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。   几何特征:   ①底面是全等的圆;   ②母线与轴平行;   ③轴与底面圆的半径垂直;   ④侧面展开图是一个矩形。   (5)圆锥:   定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。   几何特征:   ①底面是一个圆;   ②母线交于圆锥的顶点;   ③侧面展开图是一个扇形。   (6)圆台:   定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分   几何特征:   ①上下底面是两个圆;   ②侧面母线交于原圆锥的顶点;   ③侧面展开图是一个弓形。   (7)球体:   定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体   几何特征:   ①球的截面是圆;   ②球面上任意一点到球心的距离等于半径。   2、 空间几何体的三视图   定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)   注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;   俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;   侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。   3、空间几何体直观图——斜二测画法   斜二测画法特点:   ①原来与x轴平行的线段仍然与x平行且长度不变;   ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。    数学知识点2   直线与方程   (1)直线的倾斜角   定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°   (2)直线的斜率   ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。   ②过两点的直线的斜率公式:   注意下面四点:   (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;   (2)k与P1、P2的顺序无关;   (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;   (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。    数学知识点3   幂函数   定义:   形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。   定义域和值域:   当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。   性质:   对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:   首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:   排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;   排除了为0这种可能,即对于x0的所有实数,q不能是偶数;   排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。    数学知识点4   指数函数   (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。   (2)指数函数的值域为大于0的实数集合。   (3)函数图形都是下凹的。   (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。   (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。   (6)函数总是在某一个方向上无限趋向于X轴,永不相交。   (7)函数总是通过(0,1)这点。   (8)显然指数函数无界。   奇偶性   定义   一般地,对于函数f(x)   (1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。   (2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。   (3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。   (4)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。    高中数学知识点总结及公式   1.集合的有关概念。   1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素。   注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。   ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。   ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件。   2)集合的表示方法:常用的有列举法、描述法和图文法。   3)集合的分类:有限集,无限集,空集。   4)常用数集:N,Z,Q,R,N*   2.子集、交集、并集、补集、空集、全集等概念。   1)子集:若对x∈A都有x∈B,则A B(或A B);   2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 )   3)交集:A∩B={x| x∈A且x∈B}   4)并集:A∪B={x| x∈A或x∈B}   5)补集:CUA={x| x A但x∈U}   3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号。   4.有关子集的几个等价关系   ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;   ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。   5.交、并集运算的性质   ①A∩A=A,A∩B=B∩A;②A∪A=A,A∪B=B∪A;   ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;   6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。    拓展阅读:高中数学学习方法   1.首先就是要熟悉基本的解题步骤和方法,平时的练习和考试是一样的,要注意每个步骤,解题的过程是一个思维过程,注意了高度集中不要让自己的思维跑偏,而我们一般是沿着自己的思维,并且按照熟悉的步骤就可以很容易找到答案.   2.在拿到题时认真的审题,这点很重要,直接决定你答题的正确性和速度,如果你的知识具备了,题审错了,会让你走很多弯路,浪费很多时间,并且还会做错,得不偿失,所以审题时很重要,读懂每个已知的条件,分析问题和条件之间的联系,然后在进行思维运算,开始答题.   3.平时认真的做好归纳总结,这样讲题型分类,考试时会很容易。往往同类型题会有共同点甚至给你同样的思维,能够使你对解题方法进行很好的归纳总结,然后起到举一反三的效果,这样当你在看到相同类型的题时,可以大大的缩短答题的时间.   4.学会画图这点也很重要,人的大脑对图的记忆比文学好,所以学会利用已知条件来假设场景,画出对应的图,这样非常有利于解题,而且正确率是比较高的,一般情况题都来源于生活中,来解决实际问题,这样也有助于你将课本知识和实际联系在一起

2022年数学高考知识点

2022年数学高考知识点有哪些你知道吗?数学课程其基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,一起来看看2022年数学高考知识点,欢迎查阅! 数学高考知识点 轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。 一、求动点的轨迹方程的基本步骤。 1.建立适当的坐标系,设出动点M的坐标; 2.写出点M的集合; 3.列出方程=0; 4.化简方程为最简形式; 5.检验。 二、求动点的轨迹方程的常用 方法 :求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。 1.直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。 2.定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。 3.相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。 4.参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。 5.交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。 求动点轨迹方程的一般步骤: ①建系——建立适当的坐标系; ②设点——设轨迹上的任一点P(x,y); ③列式——列出动点p所满足的关系式; ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简; ⑤证明——证明所求方程即为符合条件的动点轨迹方程。 高考数学知识点 总结 遗忘空集致误 由于空集是任何非空集合的真子集,因此B=?时也满足B?A。解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。 忽视集合元素的三性致误 集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。 混淆命题的否定与否命题 命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。 充分条件、必要条件颠倒致误 对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的必要条件;如果B?A成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。 “或”“且”“非”理解不准致误 命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);绨p真?p假,绨p假?p真(概括为一真一假)。求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。 函数的单调区间理解不准致误 在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。 判断函数奇偶性忽略定义域致误 判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。 函数零点定理使用不当致误 如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。 三角函数的单调性判断致误 对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。 忽视零向量致误 零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。 向量夹角范围不清致误 解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。 an与Sn关系不清致误 在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。 对数列的定义、性质理解错误 等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N_)是等差数列。 数列中的最值错误 数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。 错位相减求和项处理不当致误 错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。 不等式性质应用不当致误 在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误。 忽视基本不等式应用条件致误 利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件。对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到。 高三数学 知识点 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高 逻辑思维 能力和空间想象能力。 2.判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”; (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”; (3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平 面相 交,那么它们的交线平行”; (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面; (5)夹在两个平行平面间的平行线段相等; (6)经过平面外一点只有一个平面和已知平面平行。 2022年数学高考知识点相关 文章 : ★ 2022高考数学选择题答题方法 ★ 高三数学知识点下册2022 ★ 2022高三数学复习方法 ★ 关于高考数学选择题知识点 ★ 2022高考政治必考知识点大全 ★ 2022年高考复习方法技巧 ★ 高三数学必备知识点归纳 ★ 2022年高三数学第二轮复习方法 ★ 高考数学直线方程知识点总结大全 ★ 2022初三数学备战中考复习知识点大全