复合函数的定义是什么?
复合函数的定义如下:设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。判断复合函数的单调性的步骤如下:⑴求复合函数的定义域;⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);⑶判断每个常见函数的单调性;⑷将中间变量的取值范围转化为自变量的取值范围;⑸求出复合函数的单调性。
复合函数定义是什么?
复合函数定义:设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u。有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。求函数的定义域主要应考虑以下几点:1、当为整式或奇次根式时,R的值域。2、当为偶次根式时,被开方数不小于0(即≥0)。3、当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0。复合函数求导的前提:复合函数本身及所含函数都可导。法则1:设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x)。法则2:设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x)。
关于高等数学复合函数
【题目】:【答案】:1、y=u,u=√t,t=m+1,m=2x2、y=e^u,u=cosx3、y=arctanu,u=5^x4、y=lnu,u=sint,t=³√m,m=n+1,n=3x²5、y=Au³,u=sint,t=wx+φ6、y=u²,u=lnt,t=arccosm,m=x²【附】不是任何两个函数都可以复合成一个复合函数,只有当Mx∩Du≠Ø时,二者才可以构成一个复合函数。设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。