二阶导数是什么?
二阶导数,是原函数导数的导数,将原函数进行二次求导。例如y=f(x),则一阶导数y’=dy/dx=df(x)/dx二阶导数y“=dy‘/dx=[d(dy/dx)]/dx=d²y/dx²=d²f(x)/dx²。x'=1/y'x"=(-y"*x')/(y')^2=-y"/(y')^3扩展资料:几何意义切线斜率变化的速度,表示的是一阶导数的变化率。函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)。这里以物理学中的瞬时加速度为例: 根据定义有可如果加速度并不是恒定的,某点的加速度表达式就为:a=limΔt→0 Δv/Δt=dv/dt(即速度对时间的一阶导数)又因为v=dx/dt 所以就有:a=dv/dt=d²x/dt² 即元位移对时间的二阶导数将这种思想应用到函数中 即是数学所谓的二阶导数f'(x)=dy/dx (f(x)的一阶导数)f''(x)=d²y/dx²=d(dy/dx)/dx (f(x)的二阶导数)参考资料来源:百度百科-二阶导数
二阶导数的推导公式
=d(dy)/dx*dx=d²y/dx²dy是微元,书上的定义dy=f'(x)dx,因此dy/dx就是f'(x),即y的一阶导数。dy/dx也就是y对x求导,得到的一阶导数,可以把它看做一个新的函数。d(dy/dx)/dx,就是这个新的函数对x求导,也即y的一阶导数对x求导,得到的就是二阶导数。函数凹凸性设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,(1)若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的。(2)若在(a,b)内f’‘(x)<0,则f(x)在[a,b]上的图形是凸的。