尊旭网
当前位置: 尊旭网 > 知识 >

初二一次函数练习题

时间:2024-09-06 12:22:37 编辑:阿旭

给20道初二正比例函数和一次函数的题中等难度的,要有分析过程。

巩固练习
一、选择题:
1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为( )
(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+3
2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过( )
(A)一象限 (B)二象限 (C)三象限 (D)四象限
3.直线y=-2x+4与两坐标轴围成的三角形的面积是( )
(A)4 (B)6 (C)8 (D)16
4.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为( )
(A)y1>y2 (B)y1=y2
(C)y1<y2 (D)不能确定
5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,则有一组a,b的取值,使得下列4个图中的一个为正确的是( )

6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第( )象限.
(A)一 (B)二 (C)三 (D)四
7.一次函数y=kx+2经过点(1,1),那么这个一次函数( )
(A)y随x的增大而增大 (B)y随x的增大而减小
(C)图像经过原点 (D)图像不经过第二象限
8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在( )
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
9.要得到y=-x-4的图像,可把直线y=-x( ).
(A)向左平移4个单位 (B)向右平移4个单位
(C)向上平移4个单位 (D)向下平移4个单位
10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为( )
(A)m>- (B)m>5 (C)m=- (D)m=5
11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是( ).
(A)k1 (D)k>1或k<
12.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( )
(A)4条 (B)3条 (C)2条 (D)1条
13.已知abc≠0,而且=p,那么直线y=px+p一定通过( )
(A)第一、二象限 (B)第二、三象限
(C)第三、四象限 (D)第一、四象限
14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是( )
(A)-4<a<0 (B)0<a<2
(C)-4<a<2且a≠0 (D)-4<a<2
15.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( )
(A)1个 (B)2个 (C)3个 (D)4个
16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为( )
(A)0 (B)1 (C)2 (D)无数
17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取( )
(A)2个 (B)4个 (C)6个 (D)8个
18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取( )
(A)2个 (B)4个 (C)6个 (D)8个
19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)之间的函数关系的是( )

20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过( )
(A)第1、2、4象限 (B)第1、2、3象限
(C)第2、3、4象限 (D)第1、3、4象限
二、填空题
1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.
2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________.
3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.
4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.
5.函数y=-3x+2的图像上存在点P,使得P到x轴的距离等于3,则点P的坐标为__________.
6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.
7.y=x与y=-2x+3的图像的交点在第_________象限.
8.某公司规定一个退休职工每年可获得一份退休金,金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、q)表示______元.
9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,则一次函数的解析式为________.
10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为Sk(k=1,2,3,……,2008),那么S1+S2+…+S2008=_______.
11.据有关资料统计,两个城市之间每天的电话通话次数T与这两个城市的人口数m、n(单位:万人)以及两个城市间的距离d(单位:km)有T=的关系(k为常数).现测得A、B、C三个城市的人口及它们之间的距离如图所示,且已知A、B两个城市间每天的电话通话次数为t,那么B、C两个城市间每天的电话次数为_______次(用t表示).

三、解答题
1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.

2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.
(1)写出y与x之间的函数关系式;
(2)如果x的取值范围是1≤x≤4,求y的取值范围.
3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:
第一档 第二档 第三档 第四档
凳高x(cm) 37.0 40.0 42.0 45.0
桌高y(cm) 70.0 74.8 78.0 82.8
(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.
4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)求小明出发多长时间距家12千米?

5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的解析式.

6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.

7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?
8.在直角坐标系x0y中,一次函数y=x+的图象与x轴,y轴,分别交于A、B两点,点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D两点的一次函数的解析式.
9.已知:如图一次函数y=x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.

10.已知直线y=x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q与直线AB相切?
11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:
甲型收割机的租金 乙型收割机的租金
A地 1800元/台 1600元/台
B地 1600元/台 1200元/台
(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.
(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.
12.已知写文章、出版图书所获得稿费的纳税计算方法是
f(x)= 其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,问张三的这笔稿费是多少元?
13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.
(1)求x、y的关系式;
(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.
14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.
某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:
用水量(m3) 交水费(元)
一月份 9 9
二月份 15 19
三月 22 33
根据上表的表格中的数据,求a、b、c.
15.A市、B市和C市有某种机器10台、10台、8台,现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.
(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.
(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值.
答案:
1.B 2.B 3.A 4.A
5.B 提示:由方程组 的解知两直线的交点为(1,a+b),
而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,
故图C不对;图D中交点纵坐标是大于a,小于b的数,不等于a+b,
故图D不对;故选B.
6.B 提示:∵直线y=kx+b经过一、二、四象限,∴ 对于直线y=bx+k,
∵ ∴图像不经过第二象限,故应选B.
7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,
∵k=-1<0,∴y随x的增大而减小,故B正确.
∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.
∵k0,∴其图像经过第二象限,故D错误.
8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,
将y=-x的图像向下平移4个单位就可得到y=-x-4的图像.
10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,
∴ ∴m=-,故应选C.
11.B 12.C 13.B 提示:∵=p,
∴①若a+b+c≠0,则p==2;
②若a+b+c=0,则p==-1,
∴当p=2时,y=px+q过第一、二、三象限;
当p=-1时,y=px+p过第二、三、四象限,
综上所述,y=px+p一定过第二、三象限.
14.D 15.D 16.A 17.C 18.C 19.C
20.A 提示:依题意,△=p2+4│q│>0, k·b<0,
一次函数y=kx+b中,y随x的增大而减小一次函数的图像一定经过一、二、四象限,选A.
二、
1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.
4.m≥0.提示:应将y=-2x+m的图像的可能情况考虑周全.
5.(,3)或(,-3).提示:∵点P到x轴的距离等于3,∴点P的纵坐标为3或-3
当y=3时,x=;当y=-3时,x=;∴点P的坐标为(,3)或(,-3).
提示:“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为3,故点P的纵坐标应有两种情况.
6.y=x-6.提示:设所求一次函数的解析式为y=kx+b.
∵直线y=kx+b与y=x+1平行,∴k=1,
∴y=x+b.将P(8,2)代入,得2=8+b,b=-6,∴所求解析式为y=x-6.
7.解方程组
∴两函数的交点坐标为(,),在第一象限.
8.. 9.y=2x+7或y=-2x+3 10.
11.据题意,有t=k,∴k=t.
因此,B、C两个城市间每天的电话通话次数为TBC=k×.

三、
1.(1)由题意得:
∴这个一镒函数的解析式为:y=-2x+4(函数图象略).
(2)∵y=-2x+4,-4≤y≤4,
∴-4≤-2x+4≤4,∴0≤x≤4.
2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数,
则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,
得 解得k=-2,p=5,
∴y与x之间的函数关系是y=-2x+5;
(2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.
∴当1≤x≤4时,-3≤y≤3.
另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.
3.(1)设一次函数为y=kx+b,将表中的数据任取两取,
不防取(37.0,70.0)和(42.0,78.0)代入,得
∴一次函数关系式为y=1.6x+10.8.
(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.
4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.
(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),
代入得:y=15x-15,(2≤x≤3).
当x=2.5时,y=22.5(千米)
答:出发两个半小时,小明离家22.5千米.
(3)设过E、F两点的直线解析式为y=k2x+b2,
由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)
过A、B两点的直线解析式为y=k3x,
∵B(1,15),∴y=15x.(0≤x≤1),
分别令y=12,得x=(小时),x=(小时).
答:小明出发小时或小时距家12千米.
5.设正比例函数y=kx,一次函数y=ax+b,
∵点B在第三象限,横坐标为-2,设B(-2,yB),其中yB<0,
∵S△AOB=6,∴AO·│yB│=6,
∴yB=-2,把点B(-2,-2)代入正比例函数y=kx,得k=1.
把点A(-6,0)、B(-2,-2)代入y=ax+b,得
∴y=x,y=-x-3即所求.
6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,
∴OD=OA=1,CA=CD,∴CA+CB=DB== 5.
7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;
当x<1,y≥1时,y=x+1;当x<1,y<1时,y=-x+1.
由此知,曲线围成的图形是正方形,其边长为,面积为2.
8.∵点A、B分别是直线y=x+与x轴和y轴交点,
∴A(-3,0),B(0,),
∵点C坐标(1,0)由勾股定理得BC=,AB=,
设点D的坐标为(x,0).
(1)当点D在C点右侧,即x>1时,
∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,
∴,∴ ①
∴,∴8x2-22x+5=0,
∴x1=,x2=,经检验:x1=,x2=,都是方程①的根,
∵x=,不合题意,∴舍去,∴x=,∴D点坐标为(,0).
设图象过B、D两点的一次函数解析式为y=kx+b,
∴所求一次函数为y=-x+.

(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,
∴,∴ ②
∴8x2-18x-5=0,∴x1=-,x2=,经检验x1=,x2=,都是方程②的根.
∵x2=不合题意舍去,∴x1=-,∴D点坐标为(-,0),
∴图象过B、D(-,0)两点的一次函数解析式为y=4x+,
综上所述,满足题意的一次函数为y=-x+或y=4x+.
9.直线y=x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),
∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,
∴cot∠ODC=cot∠OAB,即,
∴OD==8.∴点D的坐标为(0,8),
设过CD的直线解析式为y=kx+8,将C(4,0)代入0=4k+8,解得k=-2.
∴直线CD:y=-2x+8,由
∴点E的坐标为(,-).
10.把x=0,y=0分别代入y=x+4得
∴A、B两点的坐标分别为(-3,0),(0,4).
∵OA=3,OB=4,∴AB=5,BQ=4-k,QP=k+1.当QQ′⊥AB于Q′(如图),
当QQ′=QP时,⊙Q与直线AB相切.由Rt△BQQ′∽Rt△BAO,得
.∴,∴k=.
∴当k=时,⊙Q与直线AB相切.

11.(1)y=200x+74000,10≤x≤30
(2)三种方案,依次为x=28,29,30的情况.
12.设稿费为x元,∵x>7104>400,
∴x-f(x)=x-x(1-20%)20%(1-30%)=x-x···x=x=7104.
∴x=7104×=8000(元).答:这笔稿费是8000元.
13.(1)设预计购买甲、乙商品的单价分别为a元和b元,
则原计划是:ax+by=1500,①.
由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②
再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5, ③.
由①,②,③得: ④-⑤×2并化简,得x+2y=186.
(2)依题意有:205<2x+y<210及x+2y=186,得54<y<55.
由于y是整数,得y=55,从而得x=76.
14.设每月用水量为xm3,支付水费为y元.则y=
由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,
故用水量15m3、22m3均大于最低限量am3,
将x=15,x=22分别代入②式,得 解得b=2,2a=c+19, ⑤.
再分析一月份的用水量是否超过最低限量,不妨设9>a,
将x=9代入②,得9=8+2(9-a)+c,即2a=c+17, ⑥.
⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,
∴c=1代入⑤式得,a=10.
综上得a=10,b=2,c=1. (http://www.czsx.com.cn)
15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,
发往E市的机器台数分别为10-x,10-x,2x-10.
于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.

∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).
由上式可知,W是随着x的增加而减少的,
所以当x=9时,W取到最小值10000元;
当x=5时,W取到最大值13200元.
(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,
发往E市的机器台数分别是10-x,10-y,x+y-10,
于是W=200x+800(10-x)+300y+700(10-y)+400(19-x-y)+500(x+y-10)
=-500x-300y-17200.

∴W=-500x-300y+17200,且(x,y为整数).
W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.
当x=10,y=8时,W=9800.所以,W的最小值为9800.
又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.
当x=0,y=10时,W=14200,
所以,W的最大值为14200.http://www.czsx.com.cn


一道数学函数图象题

∵Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2
∴BC=1 AC=√3
(1)当E点在CA的延长线上,即x取值[3/2,2)
在△DAE中
AE=y-√3 AD=x ∠DAE=120°
DE²=x²+(y-√3)²+2(y-√3)x×1/2
=x²+y²-2√3y+3+xy-√3x
在△ACD中
AC=√3 AD=x ∠BAC=30°
CD²=3+x²-2√3x×√3/2
=3+x²-3x
∵DE⊥CD
∴△CED是直角三角形
∴CE²=CD²+DE²
y²=3+x²-3x+x²+y²-2√3y+3+xy-√3x
y=[2x²-(3+√3)x+6]/(2√3-x)
(2)当当E点在CA内 ,即 x取值(0,2)
在△DEA中
AE=√3-y AD=x ∠BAC=30°
DE²=(√3-Y)²+X²-2X(√3-Y)×√3/2
=3-2√3y+y²-3x+√3xy
在△ACD中
CD²=3+x²-3x
在Rt△CDE中
CE²=CD²+DE²
y²=3+x²-3x+3-2√3y+y²-3x+√3xy
y=[x²-6x+6]/(2√3-√3x)


我要初二上期数学题40道,难度中偏上,要带详细答案的。谢谢。满意的话加10分。谢谢啦~

1、平面直角坐标系中,点A的坐标为(4,0),点P在直线y=-x-m上,且AP=OP=4,则m的值是多少?

2、如图,已知点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,试求点B的坐标。


3、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y=1/3x+b恰好将矩形OABC分为面积相等的两部分,试求b的值。






4、如图,在平面直角坐标系中,直线y= 2x —6与x轴、y轴分别相交于点A、B,点C在x轴上,若△ABC是等腰三角形,试求点C的坐标。





5、在平面直角坐标系中,已知A(1,4)、B(3,1),P是坐标轴上一点,(1)当P的坐标为多少时,AP+BP取最小值,最小值为多少? 当P的坐标为多少时,AP-BP取最大值,最大值为多少?

6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。






7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。
8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6)
求k1,k2的值
如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标
9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A点的坐标是(-1,0),
(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;
(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。
10、在平面直角坐标系中,一次函数y=Kx+b(b小于0)的图像分别与x轴、y轴和直线x=4交于A、B、C,直线x=4与x轴交于点D,四边形OBCD的面积为10,若A的横坐标为-1/2,求此一次函数的关系式

11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y轴交于点A,且OA=OB:求这个一次函数解析式




12、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,m)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,SAOP=6.
求:(1)△COP的面积
(2)求点A的坐标及m的值;
(3)若SBOP =SDOP ,求直线BD的解析式









13、一次函数y=- x+1的图像与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC
(1)求△ABC的面积和点C的坐标;
(2)如果在第二象限内有一点P(a, ),试用含a的代数式表示四边形ABPO的面积。
(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由。

14、已知正比例函数y=k1x和一次函数y=k2x+b的图像如图,它们的交点A(-3,4),且OB= OA。
(1)求正比例函数和一次函数的解析式;
(2)求△AOB的面积和周长;
(3)在平面直角坐标系中是否存在点P,使P、O、A、B成为直角梯形的四个顶点?若存在,请直接写出P点的坐标;若不存在,请说明理由。




15、如图,已知一次函数y=x+2的图像与x轴交于点A,与y轴交于点C,
(1)求∠CAO的度数;
(2)若将直线y=x+2沿x轴向左平移两个单位,试求出平移后的直线的解析式;
(3)若正比例函数y=kx (k≠0)的图像与y=x+2得图像交于点B,且∠ABO=30°,求:AB的长及点B的坐标 。
16、一次函数y= x+2的图像与x轴、y轴分别交于点A、B,以AB为边在第二象限内做等边△ABC
(1)求C点的坐标;
(2)在第二象限内有一点M(m,1),使S△ABM =S△ABC ,求M点的坐标;
(3)点C(2 ,0)在直线AB上是否存在一点P,使△ACP为等腰三角形?若存在,求P点的坐标;若不存在,说明理由。
17、已知正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),一次函数与x轴相交于B,且OB=0.6OA,求这两个函数的解析式
18、已知一次函数y=x+2的图像经过点A(2,m)。与x轴交于点c,求角AOC.
19、已知函数y=kx+b的图像经过点A(4,3)且与一次函数y=x+1的图像平行,点B(2,m)在一次函数y=kx+b的图像上
(1)求此一次函数的表达式和m的值?
(2)若在x轴上有一动点P(x,0),到定点A(4,3)、B(2,m)的距离分别为PA和PB,当点P的横坐标为多少时,PA+PB的值最小?














答案

3、点到线的最短距离是点向该线做垂线 因为直线与x夹角45度 所以ABO为等腰直角三角形 AB=BO=2分之根号2倍的AO AO=1 BO=2分之根号2

在B分别向xy做垂线 垂线与轴交点就是B的坐标
由于做完还是等腰直角三角形 所以议案用上面的共识 可知B点坐标是(0.5,-0.5)

7、一次函数 的解析式为y=8x+4或y=(25/2)x-5.设一次函数为y=kx+b,则它与两坐标轴的交点是(-b/k,0)(0,b),所以有20=2x+b,|-b/k×b|×1/2=1,解之得k1=8,b1=4;k2=25/2,b2=-5.所以,一次函数 的解析式为y=8x+4或y=(25/2)x-5
8、因为正比例函数和一次函数都经过(3,-6)
所以这点在两函数图像上
所以, 当x=3 y=-6 分别代入 得
k1= -2 k2=1
若一次函数图像与x轴交于点A 说明A的纵坐标为0
把y=0代入到y=x-9中得 x=9
所以A(9,0)
例4、A的横坐标=-1/2,纵坐标=0
0=-k/2+b,k=2b
C点横坐标=4,纵坐标y=4k+b=9b
B点横坐标=0,纵坐标y=b
Sobcd=(\9b\+\b\)*4/2=10
10\b\=5
\b\=1/2
b=1/2,k=2b=1 y=x+1/2
b=-1/2,k=-1 y=-x-1/2

\b\表示b的绝对值


11、?解:设这个一次函数解析式为y=kx+b
∵y=kx+b经过点B(-3,4),与y轴交与点A,且OA=OB
∴{-3k+b=4
{3k+b=0
∴{k=-2/3
{b=2
∴这个函数解析式为y=-2/3x+2
?解2根据勾股定理求出OA=OB=5,
所以,分为两种情况:
当A(0,5)时,将B(-3,4)代入y=kx+b中,y=x/3+5,
当A(0,-5),将B(-3,4)代入y=kx+b中y=3x+5,


12、做辅助线PF,垂直y轴于点F。做辅助线PE垂直x轴于点E。
(1)求S三角形COP
解:S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2
(2)求点A的坐标及P的值
解:可证明三角形CFP全等于三角形COA,于是有
PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式)
又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式)
其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式)
通过(1)式和(3)式组成的方程组就解,可以得到AO = 4, FC = 1.
p = FC + OC = 1 + 2 = 3.
所以得到A点的坐标为(-4, 0), P点坐标为(2, 3), p值为3.
(3)若S三角形BOP=S三角形DOP,求直线BD的解析式
解:因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即
(1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有
(1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即 3BE = 2FD。
又因为:FD:DO = PF:OB 即 FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0)
将BE=2代入上式3BE=2FD,可得FD = 3. D坐标为(0,6)
因此可以得到直线BD的解析式为:
y = (-3/2)x + 6




17、正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),所以有 8K1=6....... (1)
8K2+b=6 ....... (2) 又OA=10 所以OB=6 即B点坐标(6,0) 所以6K2+b=0 ....... (3) 解(1)(2)(3)得K1=3/4 K2=3 b=-18
OA=√(8^2+6^2)=10,OB=6,B(6,0),k1=6/8=0.75
正比例函数y=0.75x,一次函数y=3x-18
18、一次函数y=x+2的图像经过点a(2,m),有
m=2+2=4,
与x轴交于点c,当y=0时,x=-2.
三角形aoc的面积是:1/2*|oc|m|=1/2*|-2|*|4|=4平方单位.

19、解:两直线平行,斜率相等
故k=1,即直线方程为y=x+b经过点(4,3) 代入有:
b=-1
故一次函数的表达式为:y=x-1
经过点(2,m)代入有:
m=1
2)A(4,3),B(2,1)要使得PA+PB最小,则P,A,B在一直线上
AB的直线方程为:
(y-1)/(3-1)=(x-2)/(4-2)过点(x,0)代入有:
(0-1)/2=(x-2)/2
x=1
即当点P的横坐标为1时,PA+PB的值最小.1.将一个正方形钟表的表面以时针线为界把平面分成十二个区域,求Q/T.
2.如图,△ABC的边AB=2,AC=3,I、II、III分别表示以AB、BC、CA为边的正方形,求途中三个阴影部分面积的和的最大值。

少画了一些东西。
I是正方形BDEA
II是正方形KBCH
III是正方形CAFG
回答者: 悠游1115 | 三级 | 2010-12-14 18:52

m^2加m=0,求m^3加 12m^2加2010的值。
回答者: 热心网友 | 2010-12-14 19:03

1、平面直角坐标系中,点A的坐标为(4,0),点P在直线y=-x-m上,且AP=OP=4,则m的值是多少?

2、如图,已知点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,试求点B的坐标。


3、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y=1/3x+b恰好将矩形OABC分为面积相等的两部分,试求b的值。






4、如图,在平面直角坐标系中,直线y= 2x —6与x轴、y轴分别相交于点A、B,点C在x轴上,若△ABC是等腰三角形,试求点C的坐标。





5、在平面直角坐标系中,已知A(1,4)、B(3,1),P是坐标轴上一点,(1)当P的坐标为多少时,AP+BP取最小值,最小值为多少? 当P的坐标为多少时,AP-BP取最大值,最大值为多少?

6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。






7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。
8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6)
求k1,k2的值
如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标
9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A点的坐标是(-1,0),
(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;
(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。
10、在平面直角坐标系中,一次函数y=Kx+b(b小于0)的图像分别与x轴、y轴和直线x=4交于A、B、C,直线x=4与x轴交于点D,四边形OBCD的面积为10,若A的横坐标为-1/2,求此一次函数的关系式

11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y轴交于点A,且OA=OB:求这个一次函数解析式




12、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,m)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,SAOP=6.
求:(1)△COP的面积
(2)求点A的坐标及m的值;
(3)若SBOP =SDOP ,求直线BD的解析式









13、一次函数y=- x+1的图像与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC
(1)求△ABC的面积和点C的坐标;
(2)如果在第二象限内有一点P(a, ),试用含a的代数式表示四边形ABPO的面积。
(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由。

14、已知正比例函数y=k1x和一次函数y=k2x+b的图像如图,它们的交点A(-3,4),且OB= OA。
(1)求正比例函数和一次函数的解析式;
(2)求△AOB的面积和周长;
(3)在平面直角坐标系中是否存在点P,使P、O、A、B成为直角梯形的四个顶点?若存在,请直接写出P点的坐标;若不存在,请说明理由。




15、如图,已知一次函数y=x+2的图像与x轴交于点A,与y轴交于点C,
(1)求∠CAO的度数;
(2)若将直线y=x+2沿x轴向左平移两个单位,试求出平移后的直线的解析式;
(3)若正比例函数y=kx (k≠0)的图像与y=x+2得图像交于点B,且∠ABO=30°,求:AB的长及点B的坐标 。
16、一次函数y= x+2的图像与x轴、y轴分别交于点A、B,以AB为边在第二象限内做等边△ABC
(1)求C点的坐标;
(2)在第二象限内有一点M(m,1),使S△ABM =S△ABC ,求M点的坐标;
(3)点C(2 ,0)在直线AB上是否存在一点P,使△ACP为等腰三角形?若存在,求P点的坐标;若不存在,说明理由。
17、已知正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),一次函数与x轴相交于B,且OB=0.6OA,求这两个函数的解析式
18、已知一次函数y=x+2的图像经过点A(2,m)。与x轴交于点c,求角AOC.
19、已知函数y=kx+b的图像经过点A(4,3)且与一次函数y=x+1的图像平行,点B(2,m)在一次函数y=kx+b的图像上
(1)求此一次函数的表达式和m的值?
(2)若在x轴上有一动点P(x,0),到定点A(4,3)、B(2,m)的距离分别为PA和PB,当点P的横坐标为多少时,PA+PB的值最小?














答案

3、点到线的最短距离是点向该线做垂线 因为直线与x夹角45度 所以ABO为等腰直角三角形 AB=BO=2分之根号2倍的AO AO=1 BO=2分之根号2

在B分别向xy做垂线 垂线与轴交点就是B的坐标
由于做完还是等腰直角三角形 所以议案用上面的共识 可知B点坐标是(0.5,-0.5)

7、一次函数 的解析式为y=8x+4或y=(25/2)x-5.设一次函数为y=kx+b,则它与两坐标轴的交点是(-b/k,0)(0,b),所以有20=2x+b,|-b/k×b|×1/2=1,解之得k1=8,b1=4;k2=25/2,b2=-5.所以,一次函数 的解析式为y=8x+4或y=(25/2)x-5
8、因为正比例函数和一次函数都经过(3,-6)
所以这点在两函数图像上
所以, 当x=3 y=-6 分别代入 得
k1= -2 k2=1
若一次函数图像与x轴交于点A 说明A的纵坐标为0
把y=0代入到y=x-9中得 x=9
所以A(9,0)
例4、A的横坐标=-1/2,纵坐标=0
0=-k/2+b,k=2b
C点横坐标=4,纵坐标y=4k+b=9b
B点横坐标=0,纵坐标y=b
Sobcd=(\9b\+\b\)*4/2=10
10\b\=5
\b\=1/2
b=1/2,k=2b=1 y=x+1/2
b=-1/2,k=-1 y=-x-1/2

\b\表示b的绝对值


11、?解:设这个一次函数解析式为y=kx+b
∵y=kx+b经过点B(-3,4),与y轴交与点A,且OA=OB
∴{-3k+b=4
{3k+b=0
∴{k=-2/3
{b=2
∴这个函数解析式为y=-2/3x+2
?解2根据勾股定理求出OA=OB=5,
所以,分为两种情况:
当A(0,5)时,将B(-3,4)代入y=kx+b中,y=x/3+5,
当A(0,-5),将B(-3,4)代入y=kx+b中y=3x+5,


12、做辅助线PF,垂直y轴于点F。做辅助线PE垂直x轴于点E。
(1)求S三角形COP
解:S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2
(2)求点A的坐标及P的值
解:可证明三角形CFP全等于三角形COA,于是有
PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式)
又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式)
其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式)
通过(1)式和(3)式组成的方程组就解,可以得到AO = 4, FC = 1.
p = FC + OC = 1 + 2 = 3.
所以得到A点的坐标为(-4, 0), P点坐标为(2, 3), p值为3.
(3)若S三角形BOP=S三角形DOP,求直线BD的解析式
解:因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即
(1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有
(1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即 3BE = 2FD。
又因为:FD:DO = PF:OB 即 FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0)
将BE=2代入上式3BE=2FD,可得FD = 3. D坐标为(0,6)
因此可以得到直线BD的解析式为:
y = (-3/2)x + 6




17、正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),所以有 8K1=6....... (1)
8K2+b=6 ....... (2) 又OA=10 所以OB=6 即B点坐标(6,0) 所以6K2+b=0 ....... (3) 解(1)(2)(3)得K1=3/4 K2=3 b=-18
OA=√(8^2+6^2)=10,OB=6,B(6,0),k1=6/8=0.75
正比例函数y=0.75x,一次函数y=3x-18
18、一次函数y=x+2的图像经过点a(2,m),有
m=2+2=4,
与x轴交于点c,当y=0时,x=-2.
三角形aoc的面积是:1/2*|oc|m|=1/2*|-2|*|4|=4平方单位.

19、解:两直线平行,斜率相等
故k=1,即直线方程为y=x+b经过点(4,3) 代入有:
b=-1
故一次函数的表达式为:y=x-1
经过点(2,m)代入有:
m=1
2)A(4,3),B(2,1)要使得PA+PB最小,则P,A,B在一直线上
AB的直线方程为:
(y-1)/(3-1)=(x-2)/(4-2)过点(x,0)代入有:
(0-1)/2=(x-2)/2
x=1
即当点P的横坐标为1时,PA+PB的值最小.


求初二一次函数部分的练习题

1、已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),
求 (1)a的值 (2)k,b的值 (3)这两个函数图象与x轴所围成的三角形面积.
参考答案:(1)∵y=kx+b与正比例函数y= x的图象相交于点(2,a),
即点(2,a)在正比例函数y=x上
∴a=2;

(2)∵一次函数y=kx+b的图象经过点(-1, -5),
∴-5=-k+b,即b=k-5
一次函数为:y=kx+k-5,
又∵y=kx+b与正比例函数y= x的图象相交于点(2,2),
∴2=2k+k-5,即k=7/3
∴b=k-5=3/7-5=-8/3,
k,b的值分别为7/3,-8/3;

(3)画出这两个函数的图象,即可知道。
由(2)知一次函数为y=7x/3-8/3
令y=0,x=8/7,
这两个函数图象与x轴所围成的
三角形面积S=(1/2)×2×(8/7)=8/7.2.已知直线y=2x-1
(1)求它关于x轴对称的直线的解析式
(2)将直线y=2x-1向左平移3个单位,求平移后所得直线的解析式
(3)将直线y=2x-1绕原点顺时针旋转90°,求旋转后所得直线的解析式
参考答案:(1)求它关于x轴对称的直线的解析式
解:y= -2x+1(关于x对称,则x不变,y变成-y)

(2)将直线y=2x-1向左平移3个单位,求平移后所得直线的解析式
解:左加右减法则 y=2(x+3)-1=2x+5

(3)将直线y=2x-1绕原点顺时针旋转90°,求旋转后所得直线的解析式
解:直线上找两个点(0,-1)、(1,1)绕原点旋转90°以后变为(-1,0)、(1,-1)
则旋转后的解析式为 y=-1/2(x+1)
3.已知:一次函数y=-2x+3
(1)当x为何值时,y≤1
(2)当-2≤x≤3时,求y的变化范围,并指出x为何值时,y有最大值
(3)当1<y<5时,求x的变化范围
参考答案:(1)当x为何值时,y≤1
解:y≤1所以-2x+3≤1
-2x≤-2
x>=1
(2)当-2≤x≤3时,求y的变化范围,并指出x为何值时,y有最大值
解:因为一次函数y=-2x+3为减函数(y随x的增大而减小)
所以当x=-2时取最大值,y=7
当x=3时取最小值,y=-3
y的范围为-3<=y<=7
当x=-2时取最大值

(3)当1<y<5时,求x的变化范围
解:当y=1时,-2x+3=1可得x=1
当y=5时, -2x+3=5可得x=-1
因为一次函数是一条直线所以x的范围为-1<x<1
4.已知一次函数y=(2a+4)x+(3-b)当a()b()时y随x的增大而增大;当a () b ()时函数图像过原点;当a ()b() 时,图像经过123象限。
参考答案:当2a+4>0
即a>-2时
y随x的增大而增大(此时与b值无关b属于实数R)

当3-b=0 ;2a+4≠0即b=3,a≠-2时
函数图像过原点

当2a+4>0 ;3-b>0时
即a>-2,b<3时
图像经过123象限