带式运输机传动装置一级圆柱齿轮减速器课程设计
输送能力Q=1800t/h
输送长度L=3005m
输送带宽度B=1200mm
2.2.2 线路参数
东翼一采区上山主运输大巷共3005米,可简化为如图2.1所示的八段:第一段(1点到2点)平运,长度540米;第二段(2点到3点)下运,水平长度207米,提升高度-27.1米;第三段(3点到4点)平运,水平长度62米;第四段(4点到5点)下运,水平长度518米,提升高度-82米;第五段((5点到6点)平运,长度470米;第六段(6点到7点)上运,水平长度360米,提升高度18.9米;第七段((7点到8点)下运,水平长度400米,提升高度-28.4米:第八段(8点到9点)下运,水平长度435米,提升高度-56米;整机水平长度2992米,运输长度3005米。
图2.1 输送线路参数图
2.2.3 物料特性
输送物料原煤
物料密度ρ=900kg/m3
物料安息角50°
2.2.4 带式输送机工作环境
安装地点:东滩煤矿东翼一采区上山主运输大巷,底板为煤。
环境温度:0~35℃ 。
由于带式输送机巷道起伏不平,变坡点较多,致使此带式输送机运行工况相当复杂,是目前国内乃至国外煤矿井下运行工况最为复杂的带式输送机之一:从另一方面,下运带式输送机运行安全可靠性要求高,控制系统复杂,且我国目前对下运带式输送机的理论研究较少,特别是长运距、大运量下运带式输送机系统的工况分析、动态分析、启动、制动技术研究较少,这也是本文选择长运距、大运量下运带式输送机进行研究的目的。
2.3 本课题的研究内容
2.3.1 长运距、大运量下运带式输送机关键技术分析研究
通过下运带式输送机驱动装置的各种组成方案的分析比较,以及常规长运距、大运量下运带式输送机驱动方案中软制动技术和软起动技术的理论研究,提出长运距、大运量下运带式输送机常见驱动方式和制动方法,并分析常见驱动方式和制动方法的优点和存在问题,归纳总结出长运距、大运量下运带式输送机关键驱动方案和制动方式选择的依据。
2.3.2 带式输送机的设计及驱动、制动方案的分析
针对充矿集团东滩煤矿东翼一采区主运输大巷固定下运带式输送机的设计参数及其特殊的工作环境所形成的复杂工况,首先对正常运行时工况进行设计计算,然后再对空载及最大正功和最大负功工况进行计算,再对各种工况的计算结果分析讨论,最后确定合理的张紧方式及张紧力大小,提出合理的张紧装置的选型。
通过各种工况的计算、分析比较,提出合理的驱动装置中,电机、减速器、软起动装置(调速型液力耦合器)及软制动装置各部件的选型方案。
3 长距离、大运量下运带式输送机关键技术的分析
3.1 下运带式输送机的基本组成
带式输送机的组成如图3.1所示[2],主要其有:输送带、驱动装置(电动机、减速机、软起动装置、制动器、联轴器、逆止器)、传动滚筒、改向滚筒、托辊组、拉紧装置、卸料器、机架、漏斗、导料槽、安全保护装置以及电气控制系统等组成。
1-头部漏斗 ;2-机架;3-头部扫清器;4-传动滚筒 5-安全保护装置;6-输送带;7-承载托辊;8-缓冲托辊;9-导料槽;10-改向滚筒;11-拉紧装置 12-尾架;13-空段扫清器;14-回程托辊;15-中间架;16-电动机;17-液力偶合器;18-制动器;19-减速器;20-联轴器
图3.1 带式输送机组成示意图
3.2 驱动方案的确定
带式输送机的驱动部是整机组成的关键部件。驱动部配置是否合适,直接影响带式输送机能否正常运行。长距离、大运量带下运带式输送机对驱动部的要求比通用带式输送机的要求更高,它要求驱动装置能提供平稳、平滑的起动和停车制动力矩,以保证输送带不出现超速、打滑及输送带上的物料不出现滚料和滑料现象。为此要求驱动装置具有一个制动力可随时调整的制动器,以保证起动和停车制动的可控,极大地减小对物料的冲击。同时,在输送机空载起车时还必需保证起动的平稳性。
下运带式输送机受地形条件(如起伏较大)和装载量的影响,其起动工况比较复杂,应考虑如下几种:
(1)负载量小或空载,松闸后带式输送机不能自起动;
(2)负载量较大,松闸后带式输送机能自起动,但自然加速度较小;
(3)负载量大,松闸后带式输送机能自起动,且自然加速度较大。
下运带式输送机在正常运行时,电动机也存在发电工况、电动工况交织运行的问题,所以在设计中,一般较少考虑软起动装置。带式输送机配下运带式输送机在正常运行时,电动机也存在发电工况、电动工况交织运行的问题,所以在设计中,一般较少考虑软起动装置。带式输送机配置软起动装置,可有效降低起、制动过程的动张力,延长输送带及接头的使用寿命,甚至可降低输送带强度,具有很大的经济意义。对此《煤矿安全规程》作了相应规定。
由于下运带式输送机一般情况下电动机工作在发电工况,空载时电动机工作在电动工况。目前常用的下运带式输送机驱动部典型设备配置如表3.1所示。
表3.1 常用下运带式输送机驱动部组合表
组合
设备12345
电动机单机或多机1:1(或2:1)驱动单机驱动或多机1:1(或2:1)驱动多电机1:1(或2:1)驱动多电机1:1(或2:1)驱动多电机1:1(或2:1)驱动
软起动无限矩型液力偶合器限矩型液力偶合器调压电气软起动滑差离合器
减速器垂直轴或平行轴垂直轴或平行轴垂直轴或平行轴垂直轴或平行轴可以采用垂直轴或平行轴
制动器可控盘式制动装置可控盘式制动装置液压制动或液力制动+推杆制动可控制动装置可控制动器
拉紧装置重力拉紧或自动拉紧重力式拉紧装置重力式拉紧装置重力拉紧或自动拉紧装置重力拉紧或自动拉紧装置
适用场合短距离,中小倾角、小型机中长距离,大倾角中长距离,大倾角长距离,变坡,倾角不大长距离,变坡,倾角不大
3.3 新型下运带式输送机驱动组合及其控制过程
多数下运带式输送机采用以下几种驱动部组合方式:
(1)电动机—制动装置—减速器—滚筒
(2)电动机—限矩型液力偶合器—制动装置—减速器—滚筒
(3)电动机—限矩型液力偶合器—减速器—可控制动装置—滚筒
(4)电动机—软启动—减速器—液压软制动—盘式制动装置—滚筒
(5)电动机—软启动—减速器—液力软制动—盘式制动装置—滚筒
(6)电动机—软启动—减速器—可控盘式制动装置—滚筒
(7)电动机—软启动—减速器—液粘软制动—滚筒
其中方式(1)~(3)多用于小型(短距离、小倾角、小运量、低带速)下运机上方式;(4)~(7)较适于大倾角下运输送机上。由上述方案可见,下运输送机可控制动装置必不可少;并且目前对下运输送机电动工况的可控起动问题有所忽视。对于长距离、大运量下运带式输送机,可控制动装置必不可少,同时可控起动装置也成为必须。
为此我们提出一种经济实用的长距离、大运量、大功率下运带式输送机的驱动部组合方案。该方案驱动部主要有以下设备组成:电动机、联轴器、调速型液力偶合器、减速机、可控制动装置、驱动滚筒等组成,如图3.2所示[3]。
图3.2 驱动部分组合方案示意图
采用以上驱动组合的下运带式输送机的起动和停车过程如下:
(1)开机准备:先给软起动装置的电气系统和液压系统送电,使主、从动摩擦片闭合,可控制动装置逐渐松闸,如果是重载,按起动要求重车逐渐自动起动带式输送机。
(2)当输送带在装满物料的情况下起动带式输送机时,不能直接对电机送电,否则起动太快,物料容易出现下滑或滚料,所以在这种情况下而是靠煤的下滑力起动输送机,当逐渐松开制动器,输送带带动电机旋转,通过速度传感器检测旋转速度,当速度达到近电机同步运行转速时,PLC控制电机自动送电起动,从而使电机运行于正常的发电状态,这样可以大大减小电机起动时对电气和机械的冲击。而且向下输送的角度越大,起动加速度越大。为了保证起动平稳,通过速度反馈改变制动器施加的制动力,根据不同的制动力,把加速度控制在0.3m/s2之内,保证起动过程的平稳性。
(3)电机直接起动控制,当输送机空载或轻载,逐渐松开制动器时,输送机不能自动起动,这时根据测速装置检测输送机处于零速状态或起车太慢时,需要采用调速型液力偶合器来可控起动带式输送机,此时的可控起动过程完全同上运带式输送机的起动过程。
(4)正常运行时,调速型液力偶合器开度最大,传动效率达到最大。
(5)当多电机驱动时,出现某台电机超载,需要功率平衡时,根据电机的电流反馈来进行调速型液力偶合器的输入与输出速度调节(具体详见电气部分),来进行多电机间的功率平衡调节。一般只要带式输送机系统设计合理,都能保证系统的多机功率平衡。
(6)停车时,按预定的减速度要求进行闭环改变可控制动系统的制动力矩,使带式输送机按预定的减速度减速,实现可控停车。
(7)当输送机在带载停车时,不能直接切断电机,否则容易出现飞车现象,造成严重事故。为此在停机时,先对输送机施加制动力,当检测到电机旋转速度降到其同步速度时,再对电机断电,这样在施加制动力降速时,可以充分利用电机的制动力,使停车更平稳。当输送机的速度降至电机的同步速度时,调速型液力偶合器勺管全部插入,保证电机与输送机系统的同步切除,保证了可控制动系统进一步按要求减速停车。
(8)如果停车时,带式输送机是空载(即主电机处于电动状态),则可以同上运带式输送机的停车过程结合可控制动装置进行联合停车制动。
(9)定车时,可控制动装置抱闸,主电机停机,调速型液力偶合器的液压和电气系统停电。
(10)在起动和停车过程中出现故障,如输送带跑偏、撕带、油温过高等等,调速型液力偶合器和可控制动装置的电气控制系统会自动根据要求可控停机。
4 长距离大运量下运带式输送机设计
充矿集团东滩煤矿东翼一采区主运输大巷固定带式输送机,运距3005米,运量1800吨/小时,提升高度-175.5米,环境温度为0~35 ℃ ,是属于典型的煤矿井下长运距、大运量下运带式输送机。由于带式输送机巷道起伏不平,变坡点较多,致使此带式输送机运行工况相当复杂。此外,该机运行安全可靠性要求高,控制系统复杂,是目前国内乃至国外煤矿井下运行工况较为复杂的带式输送机。本章以该下运带式输送机为例,说明其设计过程。
4.1 带式输送机原始参数
带式输送机是目前井下煤炭的主要输送设备,其设计的自动化先进程度、结构布置方式、使用安全性、可靠性、连续性和高效运行将直接影响矿井生产成本。采用带式输送机输送物料与其它方式相比有着一系列的优越性和高效性,其自动化程度高,代表现代物流技术的发展方向。本课题所要求设计的带式输送机的参数如表4.1所示。
表4.1 输送机原始参数
运量Q1800t/h
运距L54020762518470360400435
垂高0-27.10-82018-28.4-56
总垂高-175m
总运距L3005m
平均倾角β-4°
最大块度300mm
煤容重γ0.9t/m3
煤安息角50°
4.2 带式输送机的设计计算
4.2.1 输送带运行速度的选择
输送带运行速度是输送机设计计算的重要参数,在输送量一定时,适当提高带速,可减少带宽。对水平安装的输送机,可选择较高的带速,输送倾角越大带速应偏低,向上输送时带速可适当高些,向下输送时带速应低些。目前DTII系列带式输送机推荐的带速为1.25~4m/s。对于下运带式输送机,考虑管理难度大,一般确定带速为2~3.5m/s。根据工作面顺槽胶带机的规格(带宽1.2m、带速3.15m/s),工作面的实际生产能力,煤流的不均匀型等因素,同时考虑工作面煤仓无缓冲作用的状况(约3米深),确定东滩煤矿一采区运输大巷固定下运带式输送机带速3.15m/s。
4.2.2 输送带宽度计算
1)按输送能力确定带宽
带式输送机的输送能力与带宽和带速的关系是:
Q=KB2vγc t/h
式中K—货载断面系数,K值与货载在输送带上的堆积角有关(查标准MT/T467-1996中表三)
B—输送带宽度,m
V—输送机速度,m/s
γ—运送货载的集散容重,t/m3
C—输送机倾角对输送量的影响系数。
当输送量已知时可按下式求得满足生产能力所需的带宽B1:
B1= = =1.2
2)按输送物料的块度确定带宽B2
因为本带式输送机输送原煤,且amax=300mm故有:
B2≥2•amax+200=2×200+200=800mm
实际确定宽度时B=max{1000B1,B2},故可选用1200mm宽度的输送带。
4.2.3 初选输送带
我国目前生产的输送带有以下几种:尼龙分层输送带、塑料输送带、整体带芯阻燃带、钢丝绳芯带等。
在输送带类型确定上应考虑如下因素:
1)为延长输送带使用寿命,减小物料磨损,尽量选用橡胶贴面,其次为橡塑贴面和塑料贴面的输送带;
2)在同等条件下优先选择分层带,其次为整体带芯和钢丝绳芯带;
3)优先选用尼龙、维尼龙帆布层带。因在同样抗拉强度下,上述材料比棉帆布带体轻、带薄、柔软、成槽性好、耐水和耐腐蚀;
4)覆盖胶的厚度主要取决于被运物料的种类和特性,给料冲击的大小、带速与机长,输送石炭石之类的矿石,可以加厚2mm表面橡胶层,以延长使用寿命。
综合该机各类特性参数和技术特性,考虑到输送量较大,运输距离较长,且为固定用输送机,为此初选输送带采用钢丝绳芯输送带,它既有良好的强度,又具有较好的防撕裂性能,是目前井下带式输送机首选带型。可以初选输送带如下:
输送带型号:ST2500输送带
带宽:1200mm
带质量:qd=35.3kg/m2
4.3 输送机布置形式及基本参数的确定
4.3.1 输送带布置形式
对于角度不大的长距离、大运量带式输送机系统,一般可采取双滚筒1:1或2:1的功率配比,这样既可以实现电机的分时起动(煤矿井下变电所容量有限制),同时可以降低输送带的强度。为了降低输送带的强度,本驱动系统采用了头部双滚筒驱动,并把拉紧装置放在紧跟驱动滚筒后部,有利于起动时自动拉紧,同时减少了电力线路铺设长度,保证了控制响应及时。驱动部布置的位置对输送带强度的影响较大,但对于本输送系统,进行分析后得出,驱动部布置在上部效果较理想。同时遵循尽量减少施工工作量、简化设备的原则,降低制作成本,其具体布置示意图如输送机总装图所示。考虑到煤的输送质量较大,本机各类托辊组间距为:
承载托辊间距lt'=1.2m
回程托辊间距lt"=3m
缓冲托辊间距lth=0. 6m
承载托辊直径dt=φ133mm Gt'=34.92Kg
回程托辊直径dt'=φ133mm Gt"=30.63Kg
4.3.2 输送机基本参数的确定
1)输送带质量qd
由上述输送带选型结果可知qd=35.3kg/m2×1.2m=42.36kg/m
2)物料线质量q
当已知设计输送能力和带速时,物料的线质量由下式求得:
q= = =159kg/m
式中 Q—每小时运输量,t/h;
v—运输带运输速度,m/s
3)托辊旋转部分线质量qt′,qt″
由前述托辊组的选择情况可知
qt′= Gt'/ lt'=29.1kg/m
qt″= Gt"/ lt"=10.21 kg/m
跪求机械设计课程设计题目答案,题目如下: 1.设计用于带式运输机的圆锥-圆柱齿轮减速器 条件:运输带工作
机械设计课程设计说明书
设计题目:单级斜齿圆柱齿轮传动设计+链传动
系 别:机械工程系
专业班级:2002机本
学生姓名:xxx
指导老师:xxx
完成日期:2004年12月12日
邵 阳 学 院
(七里坪校区)
目录
一.设计任务书
二.前言
三.运动学与动力学计算
1.电动机的选择计算
2.各级传动比的分配
3.计算各轴的转速,功率及转矩,列成表格
四.传动零件设计计算
五.齿轮的设计及计算
六.轴与轴承的计算与校核
七.键等相关标准键的选择
八.减速器的润滑与密封
九.箱体的设计
十.设计小结
十一.参考资料
机械设计课程设计任务书
设计题目:单级斜齿圆柱齿轮传动设计+链传动
原始数据:
F=2500N F:输送带拉力;
V=1.5m/s V:输送带速度;
D=400mm D:滚筒直径。
设计工作量:
1.设计说明书一份
2.二张主要零件图(CAD)
3.零号装配图一张
工作要求:
输送机连续工作,单向提升,载荷平衡两班制工作,使用年限10年,输送带速度允许误差为±5%。
运动简图:(见附图)
二.前言
分析和拟定传动方案
机器通常由原动机、传动装置和工作装置三部分组成。传动装置用来传递原动机的运动和动力、变换其运形式以满足工作装置的需要,是机器的重要组成部分。传动装置的传动方案是否合理将直接影响机器的工作性能、重量和成本。
满足工作装置的需要是拟定传动方案的基本要求,同一种运动可以有几种不同的传动方案来实现,这就是需要把几种传动方案的优缺点加以分析比较,从而选择出最符合实际情况的 一种方案。合理的传动方案除了满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
所以拟定一个合理的传动方案,除了应综合考虑工作装置的载荷、运动及机器的其他要求外,还应熟悉各种传动机构的特点,以便选择一个合适的传动机构。因链传动承载能力低,在传递相同扭矩时,结构尺寸较其他形式大,但传动平稳,能缓冲吸振,宜布置在传动系统的高速级,以降低传递的转矩,减小链传动的结构尺寸。故本文在选取传动方案时,采用链传动。
众所周知,链式输送机的传动装置由电动机、链、减速器、联轴器、滚筒五部分组成,而减速器又由轴、轴承、齿轮、箱体四部分组成。所以,如果要设计链式输送机的传动装置,必须先合理选择它各组成部分,下面我们将一一进行选择。
三.运动学与动力学的计算
第一节 选择电动机
电动机是常用的原动机,具体结构简单、工作可靠、控制简便和维护容易等优点。电动机的选择主要包括选择其类型和结构形式、容量(功率)和转速、确定具体型号。
(1)选择电动机的类型:
按工作要求和条件选取Y系列一般用途的全封闭自扇冷鼠笼型三相异步电动机。
(2)选择电动机的容量:
工作所需的功率:
Pd = Pw/η
Pw = F*V/(1000ηw)
所以: Pd = F*V/(1000η*ηw)
由电动机至工作机之间的总效率(包括工作机的效率)为
η*ηw = η1*η2*η2*η3*η4*η5*η6
式中η1、η2、η3、η4、η5、η6分别为齿轮传动、链传动、联轴器、卷筒轴的轴承及卷筒的效率。
取η1 = 0.96、η2= 0.99、η3 =0.97、η4 = 0.97、η5 = 0.98、η6 = 0.96 ,则:
η*ηw = 0.96×0.99×0.99×0.97×0.97×0.98×0.96 =0.832
所以:
Pd = F*V/1000η*ηw = 2500×1.5/(1000×0.832) kW = 4.50 kW
根据Pd选取电动机的额定功率Pw使Pm = (1∽1.3)Pd = 4.50∽5.85kW
由查表得电动机的额定功率 Pw = 7.5 kW
(3)确定电动机的转速:
卷筒轴的工作转速为:
nw = 60×1000V/πD = 60×1000×1.5/(3.14×400) r/min = 71.66r/min
按推荐的合理传动比范围,取链传动的传动比i1 = 2 ∽ 5,单级齿轮传动比i2 = 3 ∽ 5
则合理总传动比的范围为: i = 6 ∽ 25
故电动机的转速范围为:
nd = i*nw = (6∽25)×71.66 r/min = 429.96 ∽ 1791.5 r/min
符合这一范围的同步转速有750 r/min、1000 r/min、1500 r/min ,再根据计算出的容量,由附表5.1查出有三种适用的电动机型号,其技术参数及传动比的比较情况见下表。
方 案
电动机型号
额定功率 电动机转速
r/min 传动装置的传动比
Ped/kW同步转速满载转速总传动比链齿轮
1YL0L-8 7.5 750 720 10.0433.35
2Y160M-6 7.5 1000 970 13.543.53.87
3Y132M-4 7.5 1500 1440 20.013.55.72
综合考虑电动机和传动装置的尺寸、重量以及链传动和减速器的传动比,可知方案3比较适合。因此选定电动机型号为Y160M-6,所选电动机的额定功率Ped = 7.5 kW,满载转速nm = 970 r/min ,总传动比适中,传动装置结构紧凑。所选电动机的主要外形尺寸和安装尺寸如下表所示。
中心高H外形尺寸
L×(AC/2+AD)×HD底脚安装尺寸
A×B地脚螺栓孔直径 K轴伸尺寸
D×E装键部位尺寸 F×GD
160600×417×385254×210 15 42×11012×49
第二节 计算总传动比并分配各级传动比
电动机确定后,根据电动机的满载转速和工作装置的转速就可以计算传动装置的总传动比。
(1)计算总传动比:
i = nm/nw = 970/71.66 = 13.54
(2)分配各级传动比:
为使链传动的尺寸不至过大,满足ib<ig ,可取ib =3.5 ,则齿轮的传动比:
ig = i/ib = 10.15/ 3.5 = 3.87
(3)计算传动装置的运动和动力参数:
各轴的转速
nΙ= nm/ib = 970/3.87 = 250.65 r/min
nΠ= nΙ/ig = 250.65/3.5 = 71.62 r/min
nw = nΠ = 71.62 r/min
各轴的功率
PΙ= Pm*η1 = 7.5×0.96 = 7.2 kW
PΠ=PΙ*η2 *η3 = 7.2×0.99×0.97 =6.914 kW
Pw = PΠ*η2*η4 = 6.914×0.99×0.97 = 6.64 kW
(4 ) 各轴的转矩
电动机的输出轴转矩 Td
Td = 9550×Pm/nm =9550×7.5/970 = 73.84 Nm
其他轴转矩
TΙ= 9550×PΙ/nΙ = 9550×7.2/250.65 = 274.33 Nm
TΠ= 9550×PΠ/nΠ= 9550×6.914/71.62 = 921.93Nm
Tw = 9550×Pw/nw = 9550×6.64/71.62= 885.34 Nm
第三节 各轴的转速,功率及转矩,列成表格
参 数 轴 名
电动机轴 Ι 轴 Π 轴滚筒轴
转 速 970 250.65 71.62 71.62
功 率 7.5 7.2 6.914 6.64
转 矩 73.84 274.33 921.93 885.34
传动比 3.87 3.5 1
效 率 0.96 0.99 0.97
四、传动零件的设计计算
链传动是由链条和链轮构成,链条由许多链节构成,带齿的大,小轮安装在两平行轴上。链传动属于啮合运动优点有:1)传动比准确,传动可靠,张紧力小,装配容易,轴与轴承的载荷较小,传动的效率较高,可达98%;2)与齿轮传动比较有较大的中心距;3)可在高温和润滑油环境工作,也可用于多灰尘的环境。
下面就是改链传动零件的计算:
计算项目 计算内容 计算结果
1确定设计功率
2选择链的型号 根据传递的功率P、载荷的性质和每天工作的时间等确定设计功率
Pc = KA×P = 1×7.2= 7.2 kW
1.确定链轮齿数z1 , z2
因为小链轮的转速为250.65r/min,假定链速.0.6~3,希望结构紧凑,由(教材)选取小链轮齿数z1 = 17;从动大链轮齿数z2 =i×z1 =3.5×17 =59.5(z2 < 120,合适)
取整数 z 2= 60
2.确定链条链节数Lp
初定中心距a0 = 40p , 则链节数
Lp = 2a0/p+(z1+z2)/2+ p/a0*[(z2 – z1)/(2π)]2 = 119.7(节)
取Lp =120
节
3.计算单排链所能传递的功率P0及链节距p
由教材可知,单跟链传递功率P0 ≥ Pca/(Kz*KL*Kp)
由图5-29,按小链轮转速估计,链工作在功率曲线的右侧,由表5-16 Kz = =0.85
KL ==1.1 单排链Kp=1
P0 ≥ 7.2Kw/(0.85*1.1*1)=7.70Kw
根据小链轮转速n1 = 250.65 r/min 及功率P0 = 7.70 kW,由图5-29查得可选链16A,由表5-13可查得P=25.40mm 同时也证实原估计链工作在额定功率曲线凸峰右侧是正确的。
4.确定链中心距a
a= [( - )+ ]=1020 mm
中心距调整量△a≥2p=50.8mm
实际中心距a1=a-△a=1020-50.8=969.2mm
5.验证链速
v=n1*z1*p/(60*1000)=250.65*17*25.4/(60*1000)=1.81m/s
与原估计链速相符。
6.验算小链轮毂孔dk
查《机械设计基础课程设计指导书》的附表5.3知电动机轴径D=45mm;查表13-4查得小链轮毂孔许用最大直径dmax=51mm,大于电动机轴径,合适。
7.作用在轴上的压力Q
圆周力F=1000*P/V=1000*7.2/1.81=3977.9N
按水平布置取压力系数KQ*F=4972.4N
齿轮传动是应用最广泛的一种传动形式。其传动的主要优点是:传递的功率大(可达100000kW以上)、速度范围广、效率高、工作可靠、寿命长、结构紧凑、能保证恒定,齿轮的设计主要围绕传动平稳和承载能力高这两个基本要求进行的
Pc =7.2 kW
z1 = 17
z 2= 60
Lp =120 节
Pc = 7.2 kW
P0 =7.70kw
p=25.40mm
a= 1020mm
V=1.81m/s
D=45mm
=
51mm
F=3977.9N
七.键等相关标准键的选择
八.减速器的润滑与密封
九.箱体的设计
十.设计小结
十一.参考资料
机械设计课程设计任务书
设计题目:单级斜齿圆柱齿轮传动设计+链传动
原始数据:
F=2500N F:输送带拉力;
V=1.5m/s V:输送带速度;
D=400mm D:滚筒直径。
设计工作量:
1.设计说明书一份
2.二张主要零件图(CAD)
3.零号装配图一张
工作要求:
输送机连续工作,单向提升,载荷平衡两班制工作,使用年限10年,输送带速度允许误差为±5%。
运动简图:(见附图)
二.前言
分析和拟定传动方案
机器通常由原动机、传动装置和工作装置三部分组成。传动装置用来传递原动机的运动和动力、变换其运形式以满足工作装置的需要,是机器的重要组成部分。传动装置的传动方案是否合理将直接影响机器的工作性能、重量和成本。
满足工作装置的需要是拟定传动方案的基本要求,同一种运动可以有几种不同的传动方案来实现,这就是需要把几种传动方案的优缺点加以分析比较,从而选择出最符合实际情况的 一种方案。合理的传动方案除了满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
所以拟定一个合理的传动方案,除了应综合考虑工作装置的载荷、运动及机器的其他要求外,还应熟悉各种传动机构的特点,以便选择一个合适的传动机构。因链传动承载能力低,在传递相同扭矩时,结构尺寸较其他形式大,但传动平稳,能缓冲吸振,宜布置在传动系统的高速级,以降低传递的转矩,减小链传动的结构尺寸。故本文在选取传动方案时,采用链传动。
众所周知,链式输送机的传动装置由电动机、链、减速器、联轴器、滚筒五部分组成,而减速器又由轴、轴承、齿轮、箱体四部分组成。所以,如果要设计链式输送机的传动装置,必须先合理选择它各组成部分,下面我们将一一进行选择。
三.运动学与动力学的计算
第一节 选择电动机
电动机是常用的原动机,具体结构简单、工作可靠、控制简便和维护容易等优点。电动机的选择主要包括选择其类型和结构形式、容量(功率)和转速、确定具体型号。
(1)选择电动机的类型:
按工作要求和条件选取Y系列一般用途的全封闭自扇冷鼠笼型三相异步电动机。
(2)选择电动机的容量:
工作所需的功率:
Pd = Pw/η
Pw = F*V/(1000ηw)
所以: Pd = F*V/(1000η*ηw)
由电动机至工作机之间的总效率(包括工作机的效率)为
η*ηw = η1*η2*η2*η3*η4*η5*η6
式中η1、η2、η3、η4、η5、η6分别为齿轮传动、链传动、联轴器、卷筒轴的轴承及卷筒的效率。
取η1 = 0.96、η2= 0.99、η3 =0.97、η4 = 0.97、η5 = 0.98、η6 = 0.96 ,则:
η*ηw = 0.96×0.99×0.99×0.97×0.97×0.98×0.96 =0.832
所以:
Pd = F*V/1000η*ηw = 2500×1.5/(1000×0.832) kW = 4.50 kW
根据Pd选取电动机的额定功率Pw使Pm = (1∽1.3)Pd = 4.50∽5.85kW
由查表得电动机的额定功率 Pw = 7.5 kW
(3)确定电动机的转速:
卷筒轴的工作转速为:
nw = 60×1000V/πD = 60×1000×1.5/(3.14×400) r/min = 71.66r/min
按推荐的合理传动比范围,取链传动的传动比i1 = 2 ∽ 5,单级齿轮传动比i2 = 3 ∽ 5
则合理总传动比的范围为: i = 6 ∽ 25
故电动机的转速范围为:
nd = i*nw = (6∽25)×71.66 r/min = 429.96 ∽ 1791.5 r/min
符合这一范围的同步转速有750 r/min、1000 r/min、1500 r/min ,再根据计算出的容量,由附表5.1查出有三种适用的电动机型号,其技术参数及传动比的比较情况见下表。
方 案
电动机型号
额定功率 电动机转速
r/min 传动装置的传动比
Ped/kW同步转速满载转速总传动比链齿轮
1YL0L-8 7.5 750 720 10.0433.35
2Y160M-6 7.5 1000 970 13.543.53.87
3Y132M-4 7.5 1500 1440 20.013.55.72
综合考虑电动机和传动装置的尺寸、重量以及链传动和减速器的传动比,可知方案3比较适合。因此选定电动机型号为Y160M-6,所选电动机的额定功率Ped = 7.5 kW,满载转速nm = 970 r/min ,总传动比适中,传动装置结构紧凑。所选电动机的主要外形尺寸和安装尺寸如下表所示。
中心高H外形尺寸
L×(AC/2+AD)×HD底脚安装尺寸
A×B地脚螺栓孔直径 K轴伸尺寸
D×E装键部位尺寸 F×GD
160600×417×385254×210 15 42×11012×49
第二节 计算总传动比并分配各级传动比
电动机确定后,根据电动机的满载转速和工作装置的转速就可以计算传动装置的总传动比。
(1)计算总传动比:
i = nm/nw = 970/71.66 = 13.54
(2)分配各级传动比:
为使链传动的尺寸不至过大,满足ib<ig ,可取ib =3.5 ,则齿轮的传动比:
ig = i/ib = 10.15/ 3.5 = 3.87
(3)计算传动装置的运动和动力参数:
各轴的转速
nΙ= nm/ib = 970/3.87 = 250.65 r/min
nΠ= nΙ/ig = 250.65/3.5 = 71.62 r/min
nw = nΠ = 71.62 r/min
各轴的功率
PΙ= Pm*η1 = 7.5×0.96 = 7.2 kW
PΠ=PΙ*η2 *η3 = 7.2×0.99×0.97 =6.914 kW
Pw = PΠ*η2*η4 = 6.914×0.99×0.97 = 6.64 kW
(4 ) 各轴的转矩
电动机的输出轴转矩 Td
Td = 9550×Pm/nm =9550×7.5/970 = 73.84 Nm
其他轴转矩
TΙ= 9550×PΙ/nΙ = 9550×7.2/250.65 = 274.33 Nm
TΠ= 9550×PΠ/nΠ= 9550×6.914/71.62 = 921.93Nm
Tw = 9550×Pw/nw = 9550×6.64/71.62= 885.34 Nm
第三节 各轴的转速,功率及转矩,列成表格
参 数 轴 名
电动机轴 Ι 轴 Π 轴滚筒轴
转 速 970 250.65 71.62 71.62
功 率 7.5 7.2 6.914 6.64
转 矩 73.84 274.33 921.93 885.34
传动比 3.87 3.5 1
效 率 0.96 0.99 0.97
四、传动零件的设计计算
链传动是由链条和链轮构成,链条由许多链节构成,带齿的大,小轮安装在两平行轴上。链传动属于啮合运动优点有:1)传动比准确,传动可靠,张紧力小,装配容易,轴与轴承的载荷较小,传动的效率较高,可达98%;2)与齿轮传动比较有较大的中心距;3)可在高温和润滑油环境工作,也可用于多灰尘的环境。
下面就是改链传动零件的计算:
计算项目 计算内容 计算结果
1确定设计功率
2选择链的型号 根据传递的功率P、载荷的性质和每天工作的时间等确定设计功率
Pc = KA×P = 1×7.2= 7.2 kW
1.确定链轮齿数z1 , z2
因为小链轮的转速为250.65r/min,假定链速.0.6~3,希望结构紧凑,由(教材)选取小链轮齿数z1 = 17;从动大链轮齿数z2 =i×z1 =3.5×17 =59.5(z2 < 120,合适)
取整数 z 2=第一节 选择
单级圆锥齿轮减速器使用性能
单机圆锥齿轮减速器的输入速度高,输出速度低,变速比也相对较高。单级圆柱齿轮减速机,单级圆柱齿轮减速机适用于减速比3~5。轮齿可为直齿、斜齿或人字齿,箱体通常采用铸铁铸造,也可以用钢板焊接而成。轴承常用滚动轴承,只有重载或特高速时才用华东轴承。双级圆柱齿轮减速机,双级圆柱齿轮减速机分有展开式、分流式、同轴式三种,适用减速比8~40。各种减速机特点分析:单级锥齿轮减速机,单级锥齿轮减速机适用与减速比2~4。传动比不宜过大,以减小锥齿轮的尺寸,利于加工。仅用于两轴线垂直相交的传动中。圆锥、圆柱齿轮减速机,圆锥、圆柱齿轮减速机适用于减速比为8~15。锥齿轮应布置在高速级,以减小锥齿轮的尺寸。锥齿轮可为直齿或曲线齿。圆柱齿轮多为斜齿,使其能与锥齿轮的轴向力抵消一部分。蜗杆减速机,蜗杆减速机适用于减速比为10~80。结构紧凑,传动比大,但传动效率低,适用于小功率、间隙工作的场合。当蜗杆圆周速度V4~5m/ s 时,蜗杆为下置式,润滑冷却条件较好;当 V ≥4~5m/ s 时,油的搅动损失较大,一般蜗杆为上置式。
一级圆柱齿轮减速器各部分结构用途
1、窥视孔和窥视孔盖;在减速器上部开窥视孔,可以看到传动零件啮合处的情况,以便检查齿面接触斑点和齿侧间隙。润滑油也由此注入机体内。窥视孔上有盖板,以防止污物进入机体内和润滑油飞溅出来。
2、放油螺塞;减速器底部设有放油孔,用于排出污油,注油前用螺塞堵住。
3、油标;油标用来检查油面高度,以保证有正常的油量。油标有各种结构类型,有的已定为国家标准件。
4、通气器;减速器运转时,由于摩擦发热,使机体内温度升高,气压增大,导致润滑油从缝隙(如剖面、轴外伸处间隙)向外渗漏。所以多在机盖顶部或窥视孔盖上安装通气器,使机体内热涨气体自由逸出,达到机体内外气压相等,提高机体有缝隙处的密封性能。
5、启盖螺钉;机盖与机座接合面上常涂有水玻璃或密封胶,联结后接合较紧,不易分开。为便于取下机盖,在机盖凸缘上常装有一至二个启盖螺订,在启盖时,可先拧动此螺钉顶起机盖。在轴承端盖上也可以安装启盖螺钉,便于拆卸端盖。
6、定位销;为了保证轴承座孔的安装精度,在机盖和机座用螺栓联接后,镗孔之前装上两个定位销,销孔位置尽量远些以保证定位精度。如机体结构是对称的(如蜗杆传动机体),销孔位置不应对称布置。