指数函数的单调性如何证明
指数函数的单调性如何证明
y=a^x 如果a>1,则函数单调递增,如果0<a<1,则函数单调递减.
1、复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大;
2、复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X。
因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大。
因此可得“同增” 若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小。
反之亦然,因此可得“异减”。
指数函数的单调性证明例题
举个简单的例子:y=5 上标x次方,用定义法求
令x1<x2
y1=5^x1>0
y2=5^x2>0
y1/y2
=5^x1/5^x2
=5^(x1-x2)
因为x1<x2 所以 x1-x2<0 5^(x1-x2)<1
所以 y1<y2
根据增函数定义可知
y=5上标x次方,在定义域内为增函数
我推荐: 高一数学函数知识点归纳整理
指数函数用定义证明单调性,一般做商,之后再与1比较大小
指数函数的单调性
首先,y=a^x是指数函数,我们一般讨论a>0,且a≠1的情况。当指数α是负整数时,设α=-k,则,显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点:一是有可能作为分母而不能是0。一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:α小于0时,x不等于0;α的分母为偶数时,x不小于0;α的分母为奇数时,x取R。单调区间:当α为整数时,α的正负性和奇偶性决定了函数的单调性。①当α为正奇数时,图像在定义域为R内单调递增。②当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增。③当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。④当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。当α为分数时(且分子为1),α的正负性和分母的奇偶性决定了函数的单调性。
指数函数的性质
指数函数的性质指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当0<a<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于0的时候,y等于1。在x处的切线的斜率等于此处y的值乘上lna。
指数函数的定义是什么?
指数函数是初等基本函数,通常来说函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量。指数函数的自变量范围是(-∞,+∞),因变量范围是(0,+∞)。当指数函数自变量范围在(-∞,0)时,因变量输出范围为(0,1)。在神经网络中可以用指数函数的这两个性质对数据进行(-∞,+∞)到(0,+∞)或者(-∞,0)到(0,1)的映射。指数函数的特点及应用情况:指数函数也可以实现区间映射,但对数函数和指数函数互为反函数,因此对数函数和指数函数映射的区间也正好相反。指数函数在自然科学和经济生活中有着广泛的应用,要了解指数函数的实际应用举例,能够应用指数函数的性质解决简单的实际问题。指数函数对很多的真实世界问题—比如说人口增加、放射性衰变、热辐射,以及很多其他的现象,都能够用来建立建模。