尊旭网
当前位置: 尊旭网 > 知识 >

电工最常见电路图

时间:2024-10-05 22:03:47 编辑:阿旭

电路图符号大全

电阻器与电位器;符号详见图 1 所示;1,( a )表示一般的阻值固定的电阻器。2,( b )表示半可调或微调电阻器。3,( c )表示电位器。4,( d )表示带开关的电位器。5,电阻器的文字符号是“ R ”。6,电位器是“ RP ”,即在 R 的后面再加一个说明它有调节功能的字符“ P ”。电容器的符号;1,( a )表示容量固定的电容器。2,( b )表示有极性电容器,例如各种电解电容器。3,( c )表示容量可调的可变电容器。4,( d )表示微调电容器。5,( e )表示一个双连可变电容器。6,电容器的文字符号是 C 。电感器的符号;电感线圈在电路图中的图形符号见图 3 。1,( a )是电感线圈的一般符号。2,( b )是带磁芯或铁芯的线圈。3,( c )是铁芯有间隙的线圈。4,( d )是带可调磁芯的可调电感。5,( e )是有多个抽头的电感线圈。6,电感线圈的文字符号是“ L ”。变压器的图形符号;1,( a )是空芯变压器。2,( b )是滋芯或铁芯变压器。3,( c )是绕组间有屏蔽层的铁芯变压器。4,( d )是次级有中心抽头的变压器。5,( e )是耦合可变的变压器。6,( f )是自耦变压器。7,( g )是带可调磁芯的变压器。8,( h )中的小圆点是变压器极性的标记。送话器、拾音器和录放音磁头的符号;1,送话器的符号见图 5 ( a )( b )( c )。2,( a )为一般送话器的图形符号。3,( b )是电容式送话器。4,( c )是压电晶体式送话器的图形符号。5,送话器的文字符号是“ BM ”。拾音器俗称电唱头;图 5 ( d )是立体声唱头的图形符号,它的文字符号是“ B ”。图 5 ( e )是单声道录放音磁头的图形符号。如果是双声道立体声的,就在符号上加一个“ 2 ”字,见图( f )。扬声器、耳机的符号;扬声器、耳机都是把电信号转换成声音的换能元件。耳机的符号见图 5 ( g )。它的文字符号是“ B E ”。扬声器的符号见图 5 ( h ),它的文字符号是“ BL ”。接线元件的符号;电子电路中常常需要进行电路的接通、断开或转换,这时就要使用接线元件。接线元件有两大类:一类是开关。另一类是接插件。( 1 )开关的符号在机电式开关中至少有一个动触点和一个静触点。当我们用手扳动、推动或是旋转开关的机构,就可以使动触点和静触点接通或者断开,达到接通或断开电路的目的。动触点和静触点的组合一般有 3 种:① 动合(常开)触点,符号见图 6 ( a );② 动断(常闭)触点,符号是图 6 ( b );③ 动换(转换)触点,符号见图 6 ( c )。一个最简单的开关只有一组触点,而复杂的开关就有好几组触点。开关在电路图中的图形符号见图 7 。1,( a )表示一般手动开关;2,( b )表示按钮开关,带一个动断触点;3,( c )表示推拉式开关,带一组转换触点;图中把扳键画在触。点下方表示推拉的动作;1,( d )表示旋转式开关,带 3 极同时动合的触点;2,( e )表示推拉式 1×6 波段开关;3,( f )表示旋转式 1×6 波段开关的符号。4,开关的文字符号用“ S ”,对控制开关、波段开关可以用“ SA ”,对按钮式开关可以用“ SB ”。( 2 )接插件的符号接插件的图形符号见图 8 ;1,( a )表示一个插头和一个插座,(有两种表示方式)左边表示插座,右边表示插头。2,( b )表示一个已经插入插座的插头。3,( c )表示一个 2 极插头座,也称为 2 芯插头座。4,( d )表示一个 3 极插头座,也就是常用的 3 芯立体声耳机插头座。5,( e )表示一个 6 极插头座。为了简化也可以用图( f )表示,在符号上方标上数字 6 ,表示是 6 极。6,接插件的文字符号是 X 。为了区分,可以用“ XP ”表示插头,用“ XS ”表示插座。继电器的符号;因为继电器是由线圈和触点组两部分组成的,所以继电器在电路图中的图形符号也包括两部分:一个长方框表示线圈;一组触点符号表示触点组合。当触点不多电路比较简单时,往往把触点组直接画在线圈框的一侧,这种画法叫集中表示法,如图 9 ( a )。当触点较多而且每对触点所控制的电路又各不相同时,为了方便,常常采用分散表示法。就是把线圈画在控制电路中,把触点按各自的工作对象分别画在各个受控电路里。这种画法对简化和分析电路有利。但这种画法必须在每对触点旁注上继电器的编号和该触点的编号,并且规定所有的触点都应该按继电器不通电的原始状态画出。图 9 ( b )是一个触摸开关。当人手触摸到金属片 A 时, 555 时基电路输出( 3 端)高电位,使继电器 KR1 通电,触点闭合使灯点亮使电铃发声。 555 时基电路是控制部分,使用的是 6 伏低压电。电灯和电铃是受控部分,使用的是 220 伏市电。继电器的文字符号都是“ K ”。有时为了区别,交流继电器用“ KA ”,电磁继电器和舌簧继电器可以用“ KR ”,时间继电器可以用“ KT ”。电池及熔断器符号电池的图形符号见图 10 ;长线表示正极,短线表示负极,有时为了强调可以把短线画得粗一些。1,图 10 ( b )是表示一个电池组。有时也可以把电池组简化地画成一个电池,但要在旁边注上电压或电池的数量。2,图 10 ( c )是光电池的图形符号。3,电池的文字符号为“ GB ”。4,熔断器的图形符号见图 11 ,它的文字符号是“ FU ”。二极管、三极管符号;半导体二极管在电路图中的图形符号见图 12 。1,( a )为一段二极管的符号,箭头所指的方向就是电流流动的方向,就是说在这个二级管上端接正,下端接负电压时它就能导通。2,图( b )是稳压二极管符号。3,图( c )是变容二极管符号,旁边的电容器符号表示它的结电容是随着二极管两端的电压变化的。4,图( d )是热敏二极管符号。5,图( e )是发光二极管符号,用两个斜向放射的箭头表示它能发光。6,图( f )是磁敏二极管符号,它能对外加磁场作出反应,常被制成接近开关而用在自动控制方面。7,二极管的文字符号用“ V ”,有时为了和三极管区别,也可能用“ VD ”来表示。由于 PNP 型和 NPN 型三极管在使用时对电源的极性要求是不同的,所以在三极管的图形符号中应该能够区别和表示出来。图形符号的标准规定:只要是 PNP 型三极管,不管它是用锗材料的还是用硅材料的,都用图 13 ( a )来表示。同样,只要是 NPN 型三极管,不管它是用锗材料还是硅材料的,都用图 13 ( b )来表示。图 13 ( c )是光敏三极管的符号。图 13 ( d )表示一个硅 NPN 型磁敏三极管。晶闸管、单结晶体管、场效应管的符号;晶闸管是晶体闸流管或可控硅整流器的简称,常用的有单向晶闸管、双向晶闸管和光控晶闸管,它们的符号分别为图 14 中的( a )( b )( c )。晶闸管的文字符号是“ VS ”。单结晶体管的符号见图 15 ;利用电场控制的半导体器件,称为场效应管,它的符号如图 16 所示;1,( a )表示 N 沟道结型场效应管。2,( b )表示 N 沟道增强型绝缘栅场效应管。

电工基础

一 .电工基础知识
1.直流电路
电路
电路的定义: 就是电流通过的途径
电路的组成: 电路由电源、负载、导线、开关组成
内电路: 负载、导线、开关
外电路: 电源内部的一段电路
负载: 所有电器
电源: 能将其它形式的能量转换成电能的设备
基本物理量
1.2.1 电流
1.2.1.1 电流的形成: 导体中的自由电子在电场力的作用下作有规则的定
向运动就形成电流.
1.2.1.2 电流具备的条件: 一是有电位差,二是电路一定要闭合.
1.2.1.3 电流强度: 电流的大小用电流强度来表示,基数值等于单位时间内
通过导体截面的电荷量,计算公式为
其中Q为电荷量(库仑); t为时间(秒/s); I为电流强度
1.2.1.4电流强度的单位是 “安”,用字母 “A”表示.常用单位有: 千安(KA)、安(A)、毫安(mA) 、微安(uA)
1KA = 103A 1A = 103mA 1mA = 103uA
1.2.1.5直流电流(恒定电流)的大小和方向不随时间的变化而变化,用大写字母 “I”表示,简称直流电.
1.2.2 电压
1.2.2.1 电压的形成: 物体带电后具有一定的电位,在电路中任意两点之间的
电位差,称为该两点的电压.
1.2.2.2 电压的方向: 一是高电位指向低电位; 二是电位随参考点不同而改
变.
1.2.2.3 电压的单位是 “伏特”,用字母 “U”表示.常用单位有: 千伏(KV) 、
伏(V)、毫伏(mV) 、微伏(uV)
1KV = 103V 1V = 103 mV 1mV = 103 uV
1.2.3 电动势
1.2.3.1 电动势的定义: 一个电源能够使电流持续不断沿电路流动,就是因为
它能使电路两端维持一定的
电位差.这种电路两端产生和维持电位差的能力就叫电源电动势.
1.2.3.2 电动势的单位是 “伏”,用字母 “E”表示.计算公式为
(该公式表明电源将其它形式的能转化成电能的能力)其中A为外力
所作的功,Q为电荷量,E为电动势.
1.2.3.3 电源内电动势的方向: 由低电位移向高电位
1.2.4 电阻
1.2.4.1 电阻的定义: 自由电子在物体中移动受到其它电子的阻碍,对于这种
导电所表现的能力就叫电阻.
1.2.4.2 电阻的单位是 “欧姆”,用字母 “R”表示.
1.2.4.3 电阻的计算方式为:
其中l为导体长度,s为截面积,ρ为材料电阻率
铜ρ=0.017铝ρ=0.028
欧姆定律
1.3.1 欧姆定律是表示电压、电流、电阻三者关系的基本定律.
1.3.2 部分电路欧姆定律: 电路中通过电阻的电流,与电阻两端所加的电压
成正比,与电阻成反比,称为部分欧姆定律.计算公式为
U = IR
1.3.3全电路欧姆定律: 在闭合电路中(包括电源),电路中的电流与电源的电动势成正比,与电路中负载电阻及电源内阻之和成反比,称全电路欧姆定律.计算公式为
其中R为外电阻,r0为内电阻,E为电动势
电路的连接(串连、并连、混连)
1.4.1串联电路
1.4.1.1电阻串联将电阻首尾依次相连,但电流只有一条通路的连接方法.
1.4.1.2电路串联的特点为电流与总电流相等,即I = I1 = I2 = I3…
总电压等于各电阻上电压之和,即 U = U1 + U2 + U3…
总电阻等于负载电阻之和,即 R = R1 + R2 + R3…
各电阻上电压降之比等于其电阻比,即 , , …
1.4.1.3电源串联: 将前一个电源的负极和后一个电源的正极依次连接起来.
特点: 可以获得较大的电压与电源.计算公式为
E = E1 + E2 + E3 +…+ En
r0 = r01 + r02 + r03 +…+ r0n

1.4.2并联电路
1.4.2.1电阻的并联: 将电路中若干个电阻并列连接起来的接法,称为电阻并联.
1.4.2.2并联电路的特点: 各电阻两端的电压均相等,即U1 = U2 = U3 = … = Un; 电路的总电流等于电路中各支路电流之总和,即I = I1 + I2 + I3 + … + In; 电路总电阻R的倒数等于各支路电阻倒数之和,即 .并联负载愈多,总电阻愈小,供应电流愈大,负荷愈重.
1.4.2.3通过各支路的电流与各自电阻成反比,即
1.4.2.4电源的并联:把所有电源的正极连接起来作为电源的正极,把所有电源的负极连接起来作为电源的负极,然后接到电路中,称为电源并联.
1.4.2.5并联电源的条件:一是电源的电势相等;二是每个电源的内电阻相同.
1.4.2.6并联电源的特点:能获得较大的电流,即外电路的电流等于流过各电源的电流之和.
1.4.3混联电路
1.4.3.1定义: 电路中即有元件的串联又有元件的并联称为混联电路
1.4.3.2混联电路的计算: 先求出各元件串联和并联的电阻值,再计算电路的点电阻值;由电路总电阻值和电路的端电压,根据欧姆定律计算出电路的总电流;根据元件串联的分压关系和元件并联的分流关系,逐步推算出各部分的电流和电压.
电功和电功率
电功
电流所作的功叫做电功,用符号 “A”表示.电功的大小与电路中的电流、电压及通电时间成正比,计算公式为 A = UIT =I2RT
电功及电能量的单位名称是焦耳,用符号 “J”表示;也称千瓦/时,用符号 “KWH”表示. 1KWH=3.6MJ
电功率
电流在单位时间内所作的功叫电功率,用符号 “P”表示.计算公式为
电功率单位名称为 “瓦”或 “千瓦”,用符号 “W”或 “KW”表示;也可称 “马力.
1马力=736W 1KW = 1.36马力
电流的热效应、短路
电流的热效应
定义: 电流通过导体时,由于自由电子的碰撞,电能不断的转变为热能.这种电流通过导体时会发生热的现象,称为电流的热效应.
电与热的转化关系其计算公式为
其中Q为导体产生的热量,W为消耗的电能.
短路
定义: 电源通向负载的两根导线,不以过负载而相互直接接通.该现象称之为短路.
短路分析: 电阻(R) 变小,电流(I)加大,用公式表示为
短路的危害: 温度升高,烧毁设备,发生火灾;产生很大的动力,烧毁电源,电网破裂.
保护措施: 安装自动开关;安装熔断器.
2.交流电路;
单相交流电路
定义: 所谓交流电即指其电动势、电压及电流的大小和方向都随时间按一定规律作周期性的变化,又叫正磁交流电.
单相交流电的产生: 线圈在磁场中运动旋转,旋转方向切割磁力线,产生感应电动势.
单相交流发电机: 只有一个线圈在磁场中运动旋转,电路里只能产生一个交变电动势,叫单相交流发电机.由单相交流发电机发出的电简称为单相交流电.
交流电与直流电的比较: 输送方便、使用安全,价格便宜。
交流电的基本物理量
瞬时值与最大值
电动势、电流、电压每瞬时的值称为瞬时值.符号分别是: 电动势 “E”,电压 “U”,电流 “I”.
瞬时值中最大值,叫做交流电动最大值.也叫振幅.符号分别是: Em, Im, Um.
周期、频率和角频率
周期: 交流电每交变一次(或一周)所需时间.用符号 “T”表示;单位为 “秒”,用字母 “s”表示; T = 0.02s



I
0 t T = 0.02s(China 中国)

频率: 交流电每秒交变的次数或周期叫做频率.用符号 “f”表示,单位是Hz.
50Hz(China 中国)
角频率: 单位时间内的变化角度,用 “rad/s”(每秒的角度)表示,单位为 ”ω”.

相位、初相位、相位差
相位:两个正弦电动势的最大值是不是在同一时间出现就叫相位,也可称相角.
初相位:不同的相位对应不同的瞬时值,也叫初相角.
相位差:在任一瞬时,两个同频率正弦交流电的相位之差叫相位差.

有效值:正弦交流电的大小和方向随时在变.用与热效应相等的直流电流值来表示交流电流的大小.这个值就叫做交流电的有效值.

纯电阻电路:负载的电路,其电感和电容略去不计称为纯电阻电路.

纯电感电路:由电感组成的电路称为纯电感电路.

纯电容电路:将电容器接在交流电源上组成的电路并略去电路中的一切电阻和电感.这种电路称为纯电容电路.
三相交流电路
三相交流电的定义:在磁场里有三个互成角度的线圈同时转动,电路里就产生三个交变电动势.这样的发电机叫三相交流发电机,发出的电叫三相交流电.每一单相称为一相.
三相交流电的特点
转速相同,电动势相同;
线圈形状、匝数均相同,电动势的最大值(有效值)相等;
三个电动势之间互存相位差;eA、eB、eC为三相对称电动势.计算公式为:
eA = EmSinnt
eB = EmSin(wt-1200)
eC = EmSin(wt-2400)
电源的连接(在实际连接中)
星形连接 "Y"



   A           A 相电压:每个线圈两端的电压.相电
压为220V 
UA  0 线电压:两条相线之间的电压.线电
压为380V
B          相电压与线电压的关系如下:
C        UB   B U线 = 相;U相 = 220V;
U线 = 380V
UC  C 相电流:流过每一相线圈的电流.
用I相表示
   (三相四线输出)       线电流:流过端成的电流.用I线表
示.
相电流等于线电流.

三角形连接 "Δ"
   A B I线 = 相;U线 = U相
C
(三线三相输出)
示例:有一三相发电机,其每相电动势为127V,分别求出三相绕组作星形连接和三角形连接时的线电压和相电压
解:作星形连接时,UY相 = 127V, UY线 = 相 = 127V x
作三角形连接时,U = 127V

三相电路的功率计算
单相有功功率:P = IU (纯电阻电路)
功率因数:衡量电器设备效率高低的一个系数.用Cosø表示.
对于纯电阻电路,Cosø = 1
对于非纯电阻电路,Cosø < 1
单相有功功率的计算公式为(将公式一般化) P = IUCosø
三相有功功率:不论 “Y”或"Δ"接法,总的功率等于各相功率之和
三相总功率计算公式为 P = IAUACosø + IBUBCosø + ICUCCos = 3
对于“Y”接法, 因U线 = I线 =I相,则P =3 x I相 x = I线U线Cosø
对于“Δ”接法,因因I线 = U线 =U相,则P =3 x U线 x = I线U线Cosø
示例一:某单相电焊机,用钳表测出电流为7.5A,用万能表测出电压为380V,设有功系数为0.5,求有功功率.
解:根据公式P = IUCosø,已知I= 7.5A,U = 380V,
Cosø= 0.5
则 P = IUCosø = 7.5 x 380 x 0.5 = 1425W

示例二:某单相电焊机,额定耗电量为2.5KW,额定电压为380V, Cosø为0.6,求额定电流.
解:根据公式P = IUCosø,
则I= ≈11.0A
3.电磁和电磁感应;
磁的基本知识
任一磁铁均有两个磁极,即N极(北极)和S极(南极).同性磁极相斥,异性磁极相吸.
磁场: 受到磁性影响的区域,显示出穿越区域的电荷或置于该区域中的磁极会受到机械力的作用;也可称磁铁能吸铁的空间,称为磁场.
磁材料: 硬磁材料—永久磁铁;软磁材料—电机和电磁铁的铁芯.

电流的磁效应
定义: 载流导体周围存在着磁场,即电流产生磁场(电能生磁)称电流的磁效应.
磁效应的作用: 能够容易的控制磁场的产生和消失,电动机和测量磁电式仪表的工作原理就是磁效应的作用.
通电导线(或线圈)周围磁场(磁力线)的方向判别,可用右手定则来判断:
通电直导线磁场方向的判断方法: 用右手握住导线,大拇指指向电流方向,则其余四指所指的方向就是磁场的方向.
线圈磁场方向的判断方法: 将右手大拇指伸直,其余四指沿着电流方向围绕线圈,则大拇指所指的方向就是磁场方向.
通电导线在磁场中受力的方向,用电动机左手定则确定: 伸出左手使掌心迎着磁力线,即磁力线透直穿过掌心,伸直的四指与导线中的电流方向一致,则与四指成直角的大拇指所指方向就是导线受力的方向.

电磁感应
感应电动势的产生: 当导体与磁线之间有相对切割运动时,这个导体就有电动势产生.
磁场的磁通变化时,回路中就有电势产生,以上现象称为电磁感应现象.由电磁感应现象产生的电动势叫感应电动势.由感应电动势产生的电流叫感应电流.
自感: 由于线圈(或回路)本身电流的变化而引起线圈(回路)内产生电磁感应的现象,叫自感现象.由自感现象而产生的感应电动势叫做自感电动势.
互感: 在同一导体内设有两组线圈,电流通过一组线圈时,线圈内产生
磁通并穿越线圈,而另一组则能产生感应电动势.这种现象叫做互感

二 常用电工仪表和测试的认识及应用
1.电工仪表的基本原理
磁电式仪表用符号 ‘∩’表示.其工作原理为:可动线圈通电时,线圈和永久磁铁的磁场磁场相互作用的结果产生电磁力,从而形成转动力矩,使指针偏转.
电磁式仪表用符号 ‘ ‘表示,分为吸引型和排斥型两种.
吸引型电磁式仪表工作原理:线圈通电后,铁片被磁化,无论在那种情况下都能使时钟顺时方向转动.
排斥型电磁式仪表工作原理:线圈通电后,动定铁片被磁化, 动定铁片的同极相对,互相排斥,使动铁片转动.
电动式仪表用符号 ‘ ‘表示. 其工作原理为:固定线圈产生磁场,可动线圈有电流通过时受到安培力作用,使指针顺时针转动.
2.常用的测量仪表
电工测量项目:电流、电压、电阻、电功率、电能、频率、功率因素等.
电流表和电压表
电流测量
电流测量的条件:电流表须与被测电路串联;电流流量不超过量程.
电流测量的方法:
a图 电流表直接接入式
UE 负载 适用:交直流小电流测量
A

b图 直流电流表与分流器接入
UE A R不 适用:扩大仪表量程



RfL的确定:1. 测出R表;2.定出量程范围

例:假定A表的量程为A1(1A,1m)
解:因U表=RfL,则A1 x R表 = (A2 – A1) x RfL
1 x 0.1 = (10 – 1) x RfL
即RfL = = m
c图 交流电流表通过电流互感器接入
R 适用:交流大电流测量


A

互感器的选用:
1)选用穿互感器的匝数必须满足母线电流,小于允许电流;
2)购买配套仪表:例如选用1匝150/5,则选用150/5仪表

电压测量
电压测量条件:电压表必须与被测电流并联,电压值不得超出量程.

电压测量方法:
a图 直接接入法
R 适用:交直流低压测量
V


b图 通过附加电阻加入
R 适用:扩大仪表量程,一般不超过2000V
V
c图
通过电流互感器接入
V 适用:交流高电压测量
R
电功率测量
功率表的选用:功率表大都采用电动式.因为要反映电压、电流要素,要使实际电压小于电压线圈耐压,实际电流小于电流线圈额定电流.
接线守则:符号 ‘*’,端接电源.电流端钮与电路串联,电压端钮与电路并联.
接线图:
I2 *
A B
I1 * A1 a R
R 负载

单相功率及三相功率测量接线:
a图 *W
A * 测量出ZA的功率

R ZA
B ZC ZB
C
* W1 测出三相的ZA、ZB、ZC用电总功率
b图 * P总 = P1 + P2
适用于三相三线制 ZA
UAC R UAC *W2
ZB ZC
UBC


c图 *W1
A *
* W2 ZA 三相总功率:
B R * * W3 ZB P总 = P1 + P2 + P3
C * ZC 适用于三相三线、
R R 三相四线制
N


电路图中常见的符号有哪些?

1、FU:熔断器。2、KM:接触器。3、KA:中间继电器。4、KT:时间继电器。5、KV:电压继电器。6、SA:开关的辅助触点。7、FR:热继电器。8、SB:按钮。电气系统图主要有电气原理图、电器布置图、电气安装接线图等,绘图软件有电气CAD、protel99、Cadence等。因此,电气原理图是电气系统图的一种。是根据控制线图工作原理绘制的,具有结构简单,层次分明。主要用于研究和分析电路工作原理。电气布置安装图主要用来表明各种电气设备在机械设备上和电气控制柜中的实际安装位置。为机械电气在控制设备的制造、安装、维护、维修提供必要的资料。电气安装接线图是为了进行装置、设备或成套装置的布线提供各个安装接线图项目之间电气连接的详细信息,包括连接关系,线缆种类和敷设线路。电气原理图常见的标有:QS刀开关、FU熔断器、KM接触器、KA中间继电器、KT时间继电器、KS速度继电器、FR热继电器、SB按钮、SQ行程开关。扩展资料电器元器件布置图的设计应遵循以下原则:1、必须遵循相关国家标准设计和绘制电器元件布置图。2、相同类型的电器元件布置时,应把体积较大和较重的安装在控制柜或面板的下方。3、发热的元器件应该安装在控制柜或面板的上方或后方,但热继电器一般安装在接触器的下面,以方便与电机和接触器的连接。4、需要经常维护、整定和检修的电器元件、操作开关、监视仪器仪表,其安装位置应高低适宜,以便工作人员操作。5、强电、弱电应该分开走线,注意屏蔽层的连接,防止干扰的窜入。6、电器元器件的布置应考虑安装间隙,并尽可能做到整齐、美观。参考资料来源:百度百科:电气原理图