尊旭网
当前位置: 尊旭网 > 知识 >

高中数学必修四三角函数

时间:2024-10-27 13:17:18 编辑:阿旭

高中数学三角函数是必修几

高中数学必修4高中数学必修4的内容包括三角函数、平面向量、三角恒等变换。三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。扩展资料:高中必修四三角函数的内容:1、任意角和弧度制2、任意角的三角函数阅读与思考 三角学与天文学3、三角函数的诱导公式4、三角函数的图象与性质探究与发现 函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现 利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用 利用正切线画y=tanx,x∈(-π/2,π/2)5、函数y=Asin(ωx+φ)的图像阅读与思考 振幅、周期、频率、相位6、三角函数模型的简单应用参考资料来源:百度百科—高中数学必修4 百度百科—三角函数

高中数学三角函数是课本必修几

高中数学必修4高中数学必修4的内容包括三角函数、平面向量、三角恒等变换。三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。扩展资料:高中必修四三角函数的内容:1、任意角和弧度制2、任意角的三角函数阅读与思考 三角学与天文学3、三角函数的诱导公式4、三角函数的图象与性质探究与发现 函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现 利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用 利用正切线画y=tanx,x∈(-π/2,π/2)5、函数y=Asin(ωx+φ)的图像阅读与思考 振幅、周期、频率、相位6、三角函数模型的简单应用参考资料来源:百度百科—高中数学必修4 百度百科—三角函数

高一必修四三角函数重点

特殊角三角函数值
sin0=0
sin30=0.5
sin45=0.7071 二分之根号2
sin60=0.8660 二分之根号3
sin90=1
cos0=1
cos30=0.866025404 二分之根号3
cos45=0.707106781 二分之根号2
cos60=0.5
cos90=0
tan0=0
tan30=0.577350269 三分之根号3
tan45=1
tan60=1.732050808 根号3
tan90=无
cot0=无
cot30=1.732050808 根号3
cot45=1
cot60=0.577350269 三分之根号3
cot90=0
(2)0°~90°的任意角的三角函数值,查三角函数表。(见下)
(3)锐角三角函数值的变化情况
(i)锐角三角函数值都是正值
(ii)当角度在0°~90°间变化时,
正弦值随着角度的增大(或减小)而增大(或减小)
余弦值随着角度的增大(或减小)而减小(或增大)
正切值随着角度的增大(或减小)而增大(或减小)
余切值随着角度的增大(或减小)而减小(或增大)
(iii)当角度在0°≤α≤90°间变化时,
0≤sinα≤1, 1≥cosα≥0,
当角度在0°<α<90°间变化时,
tanα>0, cotα>0.
“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。


高中数学必修四三角函数的重点知识点

一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。(2)①与 角终边相同的角的集合: 与 角终边在同一条直线上的角的集合: ; 与 角终边关于 轴对称的角的集合: ; 与 角终边关于 轴对称的角的集合: ; 与 角终边关于 轴对称的角的集合: ; ②一些特殊角集合的表示终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ;终边在二、四象限的平分线上角的集合: ;终边在四个象限的平分线上角的集合: ;(3)区间角的表示:①象限角:第一象限角 ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角: (4)正确理解角: “第一象限的角”= ;“锐角”= ; “小于 的角”= ;(5)由 的终边所在的象限, 来判断 所在的象限(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角 的弧度数的绝对值 ,其中 为以角 作为圆心角时所对圆弧的长, 为圆的半径。注意钟表指针所转过的角是负角。(7)弧长公式: ;半径公式: ;扇形面积公式: ;周长公式 二、任意角的三角函数:(1)任意角的三角函数定义:以角 的顶点为坐标原点,始边为 轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点 到原点的距离记为 ,则 ; ; 如:角 的终边上一点 ,则 。注意r>0 (2)在图中画出角 的正弦线、余弦线、正切线; (3)特殊角的三角函数值: 0 sin cos 三、同角三角函数的关系与诱导公式:(1)同角三角函数的关系作用:已知某角的一个三角函数值,求它的其余各三角函数值。(2)诱导公式: : , , ; : , , ; : , , ; : , , ; : , , ; : , , ; : , , ; : , , ; : , , ;诱导公式可用概括为:奇变偶不变,符号看象限(3)同角三角函数的关系与诱导公式的运用:①已知某角的一个三角函数值,求它的其余各三角函数值。②求任意角的三角函数值。步骤: 如 ,则 , ; 注意:巧用勾股数求三角函数值可提高解题速度:(3,4,5);(6,8,10);(5,12,13);(8,15,17);