梅森数的概述
素数也叫质数,是只能被自己和1整除的数,如2、3、5、7、11等。2300年前,古希腊数学家欧几里得证明了素数有无穷多个,并提出少量素数可写成“2^p-1”的形式,这里的指数p也是一个素数。由于这种素数具有许多独特的性质和无穷的魅力,千百年来一直吸引着众多的数学家和无数的业余数学爱好者对它进行探究 。17世纪法国著名数学家梅森曾对“2^p-1”型素数作过较为系统而深入的探究,并作出著名的断言(现称“梅森猜想”)。由于他是当时欧洲科学界的中心人物和法兰西科学院的奠基人,数学界就将“2^p-1”型的素数称为“梅森素数”,其余的数称谓梅森合数。
梅森数的由来
马林·梅森(Marin Mersenne,1588–1648)是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物。1640年6月,费马在给梅森的一封信中写道:“在艰深的数论研究中,我发现了三个非常重要的性质。我相信它们将成为今后解决素数问题的基础”。这封信讨论了形如2^P-1的数(其中p为素数)。早在公元前300多年,古希腊数学家欧几里得就开创了研究2^P-1的先河,他在名著《几何原本》第九章中论述完美数时指出:如果2^P-1是素数,则(2^p-1)2^(p-1)是完美数。梅森在欧几里得、费马等人的有关研究的基础上对2^P-1作了大量的计算、验证工作,并于1644年在他的《物理数学随感》一书中断言:对于p=2,3,5,7,13,17,19,31,67,127,257时,2^P-1是素数 ;而对于其他所有小于257的数时,2^P-1是合数。前面的7个数(即2,3,5,7,13,17和19)属于被证实的部分,是他整理前人的工作得到的;而后面的4个数(即31,67,127和257)属于被猜测的部分。不过,人们对其断言仍深信不疑。虽然梅森的断言中包含着若干错误,但他的工作极大地激发了人们研究2^P-1型素数的热情,使其摆脱作为“完美数”的附庸的地位。梅森的工作是素数研究的一个转折点和里程碑。由于梅森学识渊博,才华横溢,为人热情以及最早系统而深入地研究2^P-1型的数,为了纪念他,数学界就把这种数称为“梅森数”;并以Mp记之(其中M为梅森姓名的首字母),即Mp=2^P-1。如果梅森数为素数,则称之为“梅森素数”(即2^P-1型素数)。值得一提的是:在梅森素数的基础研究方面,法国数学家鲁卡斯和美国数学家雷默都做出了重要贡献;以他们命名的“卢卡斯-莱默检验法”是目前已知的检测梅森素数素性的最佳方法。此外,中国数学家和语言学家周海中给出了梅森素数分布的精确表达式,为人们寻找梅森素数提供了方便;这一研究成果被国际上命名为“周氏猜测”。 美国中央密苏里大学数学家库珀领导的研究小组通过参加一个名为“互联网梅森素数大搜索”(GIMPS)项目,日前发现了第48个梅森素数——2^57885161-1;该素数也是目前已知的最大素数,有17425170位;如果用普通字号将它连续打印下来,它的长度可超过65公里!美国数学学会发言人布林说:“超大素数令数学家和计算机科学家感到兴奋。”他认为这是素数探究的一项重大突破。 梅森素数在当代具有重大意义和实用价值。它是发现已知最大素数的最有效途径,其探究推动了“数学皇后”——数论的研究,促进了计算技术、密码技术、程序设计技术和计算机检测技术的发展。难怪许多科学家认为,梅森素数的研究成果,在一定程度上反映了一个国家的科技水平。英国数学协会主席马科斯 索托伊甚至认为它的研究进展不但是人类智力发展在数学上的一种标志,也是整个科技发展的里程碑之一。