绝对值不等式的解法
解绝对值不等式必须设法化去式中的绝对值符号,绝对值不等式的解法有几何意义法、讨论法、平方法以及函数图像法。 绝对值不等式的几种解法 (一)几何意义法 例如:求不等式|x|<1的解集 不等式|x|<1的解集表示到原点的距离小于1的点的集合, 所以不等式|x|<1的解集为{x|-1<x<1}。 (二)讨论法 例如:求不等式|x|<1的解集 ①当x≥0时,原来的不等式可以化为x<1,∴0≤x<1。 ②当x<0时,原来的不等式可以化为-x<1,∴-1<x<0。 综上所述,不等式|x|<1的解集为{x|-1<x<1}。 (三)平方法 例如:求不等式|x|<1的解集 把原不等式的两边平方可以得到:x 2 <1,即x 2 -1<0,即(x+1)(x-1)<0 即-1<x小于1,∴不等式|x|<1的解集为{x|-1<x<1}。 (四)函数图像法 例如:求不等式|x|<1的解集 从函数观点看,不等式|x|<1的解集表示函数y=|x|的图像位于y=1的图像下方的部分对应的x的取值范围。所以不等式|x|<1的解集为{x|-1<x<1}。 绝对值不等式的性质 |a|表示数轴上的点a与原点的距离叫做数a的绝对值。|a|-|b|≤|a±b|≤|a|+|b|。 两个重要性质: 1、|ab|=|a||b| |a/b|=|a|/|b|(b≠0) 2、|a||a| | |a|-|b| |≤|a+b|≤|a|+|b|,当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立。 另外有:|a-b|≤|a|+|-b|=|a|+|-1|*|b|=|a|+|b| | |a|-|b| |≤|a±b|≤|a|+|b|
怎样解不等式的绝对值?
一、 绝对值定义法对于一些简单的,一侧为常数的含不等式绝对值,直接用绝对值定义即可, 1、如|x| < a在数轴上表示出来。利用数轴可将解集表示为−a< x < a2、|x| ≥ a同理可在数轴上表示出来,因此可得到解集为x≥ a或x≤ a3、|ax +b| ≥ c型,利用绝对值性质化为不等式组−c ≤ ax + b ≤ c,再解不等式组。二、平方法对于不等式两边都是绝对值时,可将不等式两边同时平方。解不等式 |x+ 3| > |x− 1|将等式两边同时平方为(x + 3)2 > (x − 1)2得到x2 + 6x + 9 > x2 − 2x + 1之后解不等式即可,解得x > −1三、零点分段法对于不等式中含有有两个及以上绝对值,且含有常数项时,一般使用零点分段法。例 解不等式|x + 1| + |x − 3| > 5在数轴上可以看出,数轴可以分成x < −1,−1 ≤ x < 3, x ≥ 3三个区间,由此进行分类讨论。当x 5解得x 0,x− 3 5无解。当 x ≥ 3时 因为x + 1 > 0 ,x − 3 > 0所以不等式化为x + 1 + x− 3 > 5解得x >72综上所述,不等式的解为x 72。扩展资料1、实数的绝对值的概念(1)|a|的几何意义|a|表示数轴上实数a对应的点与原点之间的距离.(2)两个重要性质①(ⅰ)|ab|=|a||b|②|a|<|b|⇔a2<b2(3)|x-a|的几何意义:数轴上实数x对应的点与实数a对应的点之间的距离,或数轴上表示x-a的点到原点的距离.(4)|x+a|的几何意义:数轴上实数x对应的点与实数-a对应的点之间的距离,或数轴上表示x+a的点到原点的距离。2、绝对值不等式定理(1)定理:对任意实数a和b,有|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)定理的另一种形式:对任意实数a和b,有|a-b|≤|a|+|b|,当且仅当ab≤0时,等号成立.绝对值不等式定理的完整形式:|a|-|b|≤|a±b|≤|a|+|b|.其中,(1)|a+b|=|a|-|b|成立的条件是ab≤0,且|a|≥|b|;(2)|a+b|=|a|+|b|成立的条件是ab≥0;(3)|a-b|=|a|-|b|成立的条件是ab≥0,且|a|≥|b|;(4)|a-b|=|a|+|b|成立的条件是ab≤0.