线性拟合和线性回归的区别是什么?
线性回归就是线性拟合,在统计的意义上是等价的。拟合就是为了找到那条,对所有点来说,残差平方和最小的直线,线性回归也是。回归是国外的讲法叫regression,命名的统计学家是想说,这些点都围绕在一条看不见的直线,直线周围的点若偏离的大了感觉就有回归直线,向直线靠拢的趋势。拟合是国内的传统讲法,用一条直线代替样本点,以达到预测的作用。最后说一下线性这个概念,比如拟合每天学习时间和高考成绩,可能就是线性的。但若拟合收入高低和幸福指数,那很可能就不是了,因为不是说赚的越高越高兴,而且可能到了很高的水平,收入增加了很多,却幸福不起来,数据有可能是指数,有可能是二次函数,这些都归为非线性。主要是线性这个性质非常友好,大家喜闻乐见,所以有了很多转换公式,把非线性的数据变换成线性,拟合出来再反变换回去。
线性回归的拟合方程
线性回归都可以通过最小二乘法求出其方程,可以计算出对于y=bx+a的直线。拟合是推求一个函数表达式y=f(x)来描述y和x之间的关系,一般用最小二乘法原理来计算。用直线来拟合时,可以叫一次曲线拟合,虽然有点别扭;用二次函数来拟合时,可以叫抛物线拟合或二次曲线拟合,但不能说线性回归。用直线(y=ax+b)拟合时,得到的方程和一元线性回归分析得到的方程是一样的,但是拟合时可以人为指定函数参数形式,如b=0,而线性回归分析目的则侧重于描述y和x线性相关的程度,通常会同时计算相关系数、F检验值等统计参数。求解方法线性回归模型经常用最小二乘逼近来拟合,但他们也可能用别的方法来拟合,比如用最小化“拟合缺陷”在一些其他规范里(比如最小绝对误差回归),或者在回归中最小化最小二乘损失函数的乘法。相反,最小二乘逼近可以用来拟合那些非线性的模型。因此,尽管最小二乘法和线性模型是紧密相连的,但他们是不能划等号的。以上内容参考:百度百科-线性回归方程
多元线性回归的优缺点是什么?
一、多元线性回归分析的优点:1、在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。2、在多元线性回归分析是多元回归分析中最基础、最简单的一种。3、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果。二、多元线性回归分析的缺点有时候在回归分析中,选用何种因子和该因子采用何种表达 式只是一种推测,这影响了用电因子的多样性和某些因子的不可测性,使得回归分析在某些 情况下受到限制。多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。扩展资料社会经济现象的变化往往受到多个因素的影响,因此,一般要进行多元回归分析,我们把包括两个或两个以上自变量的回归称为多元线性回归 。多元线性回归与一元线性回归类似,可以用最小二乘法估计模型参数,也需对模型及模型参数进行统计检验 。选择合适的自变量是正确进行多元回归预测的前提之一,多元回归模型自变量的选择可以利用变量之间的相关矩阵来解决。Matlab、spss、SAS等软件都是进行多元线性回归的常用软件。
多元线性回归的前提条件
多元线性回归的前提条件总结起来可用四个词来描述:线性、独立、正态、齐性。1、自变量与因变量之间存在线性关系这可以通过绘制”散点图矩阵”进行考察因变量随各自变量值的变化情况。如果因变量Yi 与某个自变量X i 之间呈现出曲线趋势,可尝试通过变量变换予以修正,常用的变量变换方法有对数变换、倒数变换、平方根变换、平方根反正弦变换等。2、各观测间相互独立任意两个观测残差的协方差为0 ,也就是要求自变量间不存在多重共线性问题。对于如何处理多重共线性问题,请参考《多元线性回归模型中多重共线性问题处理方法》。3、残差e 服从正态分布N(0,σ2) 。其方差σ2 = var (ei) 反映了回归模型的精度, σ 越小,用所得到回归模型预测y的精确度愈高。4、e 的大小不随所有变量取值水平的改变而改变,即方差齐性。多元线性回归简介:在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。社会经济现象的变化往往受到多个因素的影响,因此,一般要进行多元回归分析,我们把包括两个或两个以上自变量的回归称为多元线性回归。多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度
多元线回归分析有什么用?
一、多元线性回归分析的优点:1、在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。2、在多元线性回归分析是多元回归分析中最基础、最简单的一种。3、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果。二、多元线性回归分析的缺点有时候在回归分析中,选用何种因子和该因子采用何种表达 式只是一种推测,这影响了用电因子的多样性和某些因子的不可测性,使得回归分析在某些 情况下受到限制。多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。扩展资料社会经济现象的变化往往受到多个因素的影响,因此,一般要进行多元回归分析,我们把包括两个或两个以上自变量的回归称为多元线性回归 。多元线性回归与一元线性回归类似,可以用最小二乘法估计模型参数,也需对模型及模型参数进行统计检验 。选择合适的自变量是正确进行多元回归预测的前提之一,多元回归模型自变量的选择可以利用变量之间的相关矩阵来解决。Matlab、spss、SAS等软件都是进行多元线性回归的常用软件。