尊旭网
当前位置: 尊旭网 > 知识 >

勾股定理证明图

时间:2024-12-18 03:49:59 编辑:阿旭

达芬奇勾股定理证法

三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式相等,就能得出一个新的关系式——勾股定理,所有勾股定理的证明方法都有这么个共同点。
观察纸片一,因为要证的事勾股定理,那么容易知道EB⊥CF,又因为纸片的两边是对称的,所以能够知道四边形ABOF和CDEO都是正方形。然后需要知道的是角A'和角D'都是直角,原因嘛,可以看纸片一,连结AD,因为对称的缘故,所以∠BAD=∠FAD=∠CDA=∠EDA=45°,那么很明显,图三中角A'和角D'都是直角。
证明:第一张纸片多边形ABCDEF的面积S1=S正方形ABOF+S正方形CDEO+2S△BCO=OF^2+OE^2+OF·OE
第三张纸片中多边形A'B'C'D'E'F'的面积S2=S正方形B'C'E'F'+2△C'D'E'=E'F'^2+C'D'·D'E'
因为S1=S2
所以OF^2+OE^2+OF·OE=E'F'^2+C'D'·D'E'
又因为C'D'=CD=OE,D'E'=AF=OF
所以OF·OE=C'D'·D'E'
则OF^2+OE^2=E'F'^2
因为E'F'=EF
所以OF^2+OE^2=EF^2
勾股定理得证。


达芬奇验证的勾股定理(图),怎么加以说明?

在一块长方形木板中,先挖去一个六边形(A到短边的距离与D到短边的距离一样),在沿他的对称轴剪开,将Ⅱ旋转180,在拼接。得到的新六边形面积与原来相等。此时CD=A‘F‘=b=CO AB=A’B=a=BO∠BOC=∠B'A'F'=90 ∴B'F'=BC ∴S△BCO=FOE=B‘’A‘’F‘=C'D'E'’ ∴SBAFO+SCODE=SB'F'E'C命题得证

勾股定理的证明方法最简单的6种

勾股定理的证明方法最简单的6种如下:一、正方形面积法这是一种很常见的证明方法,具体使用的是面积来证明的。以三角形的三边分别作三个正方形,发现两个较小的正方形面积之和等于较大的那个三角形。勾股定理得到证明。二、赵爽弦图赵爽弦图是指用四个斜边长为c,较长直角边为a,较短直角边为c的指教三角形组成一个正方形。在这个较大的正方形里还有一个较小的正方形。通过计算整体的面积算出勾股定理。三、梯形证明法梯形证明法也是一种很好的证明方法。即选两个一样的直角三角形一个横放,一个竖放,将高处的两个点相连。计算梯形的面积等于三个三角形的面积分别相加,从而证明勾股定理。四、青出朱入图青出朱入图是我国古代数学家刘徽提出的一种证明勾股定理的方法,是使用割补的方法进行的。就是将两个大小不等的正方形边长分别为a,b,然后通过割补的方法将它们拼成一个较大的正方形。五、毕达哥拉斯证明毕达哥拉斯的证明方法,也是证明面积相等,蛋是才去的方法是对三角形进行了移动。比如将原来的四个分散在四周的三角形,两两相组合,发现两个正方形的面积和两个长方形的面积相等。六、三角形相似证明利用三角形的相似性来证明勾股定理。就是将三角形从直角边作垂线,这单个三角形相似。以三边分别作正方形,因为边成比例,所以面积也具有成比例的关系。

勾股定理的常见三种证明方法

证明方法:1、赵爽弦图《九章算术》中,赵爽描述此图:勾股各自乘,并之为玄实。开方除之,即玄。案玄图有可以勾股相乘为朱实二,倍之为朱实四。以勾股之差自相乘为中黄实。加差实亦成玄实。以差实减玄实,半其余。2、加菲尔德证法加菲尔德在证出此结论5年后,成为美国第20任总统,所以人们又称其为“总统证法”。3、加菲尔德证法变式该证明为加菲尔德证法的变式。如果将大正方形边长为c的小正方形沿对角线切开,则回到了加菲尔德证法。相反,若将上图中两个梯形拼在一起,就变为了此证明方法。4、青朱出入图青朱出入图,是东汉末年数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,特色鲜明、通俗易懂。5、欧几里得证法在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点画一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。公元前十一世纪,数学家商高(西周初年人)就提出“勾三、股四、弦五”。编写于公元前一世纪以前的《周髀算经》中记录着商高与周公的一段对话。商高说:“……故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。