尊旭网
当前位置: 尊旭网 > 知识 >

liuzhu

时间:2024-12-24 20:42:23 编辑:阿旭

简述汤逊理论与流注理论的异同点,并说明这两种理论的使用范围

汤逊理论和流注理论都是解释均匀电场的气体放电理论。前者适用于均匀电场、低气压、短间隙的条件下;后者适用于均匀电场、高气压、长间隙的条件下。不同点:(1)放电外形流注放电是具有通道形式的。根据汤逊理论,气体放电应在整个间隙中均匀连续地发展。(2)放电时间根据流注理论,二次电子崩的起始电子由光电离形成,而光子的速度远比电子的大,二次电子崩又是在加强了的电场中,所以流注发展更迅速,击穿时间比由汤逊理论推算的小得多。(3)阴极材料的影响根据流注理论,大气条件下气体放电的发展不是依靠正离子使阴极表面电离形成的二次电子维持的,而是靠空间光电离产生电子维持的,故阴极材料对气体击穿电压没有影响。根据汤逊理论,阴极材料的性质在击穿过程中应起一定作用。实验表明,低气压下阴极材料对击穿电压有一定影响。


叙述汤逊理论的基本观点和流注理论的基本观点以及他们的适用范围?

答:汤逊理论只适用于pd值较小的范围,流注理论只适用于pd值较大的范围,两者的过渡值为pd≈26.66kPacm。(1分)汤逊理论的基本观点是:电子的碰撞电离是气体放电时电流倍增的主要过程,而阴极表面的电子发射是维持放电的重要条件。(2分)流注理论的基本观点:①以汤逊理论的碰撞电离为基础,强调空间电荷对电场的畸变作用,着重于用气体空间的光电离来解释气体放电通道的发展过程。②放电以起始到击穿并非碰撞电离连续量变的过程,当初始电子崩中离子数达到108以上时,要引起空间光电离这样一个质的变化,此时由光子造成的二次崩向主崩汇合而形成流注。③流注一旦形成,放电就转入自持。(


流注理论的详细内容

应用流注理论描述放电过程见图流注理论描述的放电过程。在外施电场作用下,电子崩由阴极向阳极发展,由于气体原子(或分子)的激励、电离、复合等过程产生光电离,在电子崩附近由光电子引起新的子电子崩,电子崩接近阳极时,电离最强,光辐射也强。光电子产生的子电子崩汇集到由阳极生长的放电通道,并帮助它的发展,形成由阳极向阴极前进的流注(正流注),流注的速度比碰撞电离快。同时,光辐射是指向各个方向的,光电子产生的地点也是随机的,这说明放电通道可能是曲折进行的。正流注达到阴极时,正负电极之间形成一导电的通道,可以通过大的电流,使间隙击穿。如果所加电压超过临界击穿电压(过电压),电子崩电离加强,虽然电子崩还没有发展到阳极附近,但在间隙中部就可能产生许多光电子及子电子崩,它们汇集到主电子崩,加速放电的发展,增加放电通道的电导率,形成由阴极发展的流注(负流注)。瑞特和米克认为,当电子崩头部的电场比外加电压在间隙中形成的均匀电场更强时,电子崩附近电场严重畸变,电离剧烈,放电可以自行发展成流注,从而导致间隙击穿。根据这一基本思想,他们进行了理论推演。虽然他们计算电子崩头部电场的方法不尽相同,推导出不同的计算击穿电压的方程,但是计算得到的击穿电压很相近,与试验比较相符。