尊旭网
当前位置: 尊旭网 > 知识 >

欧拉恒等式

时间:2025-01-08 04:10:08 编辑:阿旭

恒等式是什么?

恒等式:两个解析式之间的一种关系。给定两个解析式,如果对于它们的定义域(见函数)的公共部分(或公共部分的子集)的任一数或数组,都有相等的值,就称这两个解析式是恒等的。例如x2-y2与(x+y)(x-y) ,对于任一组实数(a,b),都有a2-b2=(a+b)(a-b),所以x2-y2与( x+y)(x-y)是恒等的。 恒等式 - 标准:两个解析式恒等与否不能脱离指定的数集来谈,因为同样的两个解析式,在一个数集内是恒等的,在另一个数集内可能是不恒等的。例如与x,在非负实数集内是恒等的,而在实数集内是不恒等的。
就是类似1=1,2=2这种等式,或者像ac+bc=c(a+b)这样的公式、定理


什么是恒等式

恒等式是指等式中无论其变数如何取值,等号两边永远相等的数学式。恒等式中的等号可以用恒等号(≡)表示。 a^2-b^2=(a+b)(a-b) a^2-2ab+b^2=(a-b)^2 a^2+2ab+b^2=(a+b)^2
参考: wiki
等式可以分为三类:①恒等式:等号两边代数式中的字母无论取什么样的值,都能使等号两边代数式的值相等,这样的等式叫做恒等式.例如,2+3=5,a+a=2a,(x+y)(x-y)=x2-y2等,都是恒等式.②条件等式:等号两边代数式中的字母只有取某些值时,才能使等号两边代数式的值相等,这样的等式叫做条件等式.例如,2x=6,只有当x=3时,等号两边的值才能相等;x2+7x+3=3,只有当x=0或x=-7时.等号两边的值才能相等,所以它们是条件等式.③矛盾等式:在形式上用等号连接的式子,而实质上无法成为事实,或在指定的数的范围内,找不到文字符号所取的值,能使等号两边的值相等.这样的等式叫做矛盾等式.例如,a+1=a+2就是矛盾等式.
也可以用更简单的例子: x + x ≡ 2x ≡ 就是 恒等 的意思。


欧拉公式推导欧拉公式推导简述

欧拉公式推导如下。
1、欧拉公式是e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
2、e^ix=cosx+isinx的证明:因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……cosx=1-x^2/2!+x^4/4!-x^6/6!……sinx=x-x^3/3!+x^5/5!-x^7/7!……在e^x的展开式中把x换成±ix.(±i)^2=-1,(±i)^3=??i,(±i)^4=1……e^±ix=1±ix/1!-x^2/2!??x^3/3!+x^4/4!……=(1-x^2/2!+……)±i(x-x^3/3!……)所以e^±ix=cosx±isinx将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到:e^iπ+1=0。


欧拉公式的推导过程

如下:eix = 1 + i x - x2/2! - i x3/3! + x4/4! + i x5/5! + …= (1 - x2/2! + x4/4! + …) + i (x - x3/3! + x5/5! + …)。又因为:cos x = 1 - x2/2! + x4/4! + …+。sin x = x - x3/3! + x5/5! + …+。所以eix = cos x + i sin x。在任何一个规则球面地图上,用 R记区域个 数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,这就是欧拉定理 ,它于 1640年由 Descartes首先给出证明 ,后来 Euler(欧拉 )于 1752年又独立地给出证明 ,我们称其为欧拉定理 ,在国外也有人称其 为 Descartes定理。R+ V- E= 2就是欧拉公式。

欧拉公式的意义是什么?

欧拉公式的意义即建立了三角函数和指数函数的关系,它不仅出现在数学分析里,而且在复变函数论里也占有非常重要的地位,更被誉为“数学中的天桥”。复变函数中,e^(ix)=(cos x+isin x)称为欧拉公式,e是自然对数的底,i是虚数单位。拓扑学中欧拉公式应用:拓扑学中,在任何一个规则球面地图上,用 R记区域个 数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,这就是欧拉定理 ,它于 1640年由 Descartes首先给出证明 ,后来 Euler(欧拉 )于 1752年又独立地给出证明 ,我们称其为欧拉定理 ,在国外也有人称其 为 Descartes定理。R+ V- E= 2就是欧拉公式。

欧拉公式是什么?

问题一:欧拉公式具体是什么? 欧拉公式有4条
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复数
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2
(3)三角形
设R为三角形外接圆半径,弗为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
(4)多面体
设v为顶点数,e为棱数,是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体
等等
其实欧拉公式是有4个的,上面说的都是多面体的公式

问题二:欧拉公式是什么? 欧拉公式
公式描述:e^ix=cosx+isinx
公式中e是自然对数的底,i是虚数单位。

问题三:欧拉公式具体是什么? 欧拉公式有4条
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复数
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2
(3)三角形
设R为三角形外接圆半径,弗为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
(4)多面体
设v为顶点数,e为棱数,是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体
等等
其实欧拉公式是有4个的,上面说的都是多面体的公式

问题四:欧拉公式是什么? 欧拉公式
公式描述:e^ix=cosx+isinx
公式中e是自然对数的底,i是虚数单位。


  • 上一篇:囧团
  • 下一篇:没有了